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1 Introduction

1.1 Goals of the Project

This project was concerned with agents that act to gain information. By "agent" we mean any
computational system that picks up signals from its environment, processes those signals, and

generates outputs to control the environment in goal-directed ways. For simple, highly
structured environments and tasks, the problem of designing intelligent agents is relatively
straightforward and can be handled by existing techniques in control theory and computer
science. In cases where the environment or task is complex, new approaches are needed.

Artificial Intelligence (AI) research over the years has developed techniques for modeling
complex task domains for which only fragmentary, qualitative domain models are available.

Unfortunately, the direct application of those techniques to the agent-design problem is not
always possible. The reason for this derives from the computational complexity of inference. In

order to exploit qualitative knowledge of the environment, AI has generally adopted the strategy
of encoding domain knowledge as symbolic expressions and manipulating these expressions
explicitly. While this technique affords great flexibility of expression and narrows the gap
between the designer's conception of the domain and the structure of the artifact he is designing,
it typically has the unfortunate side effect of requiring slow inferential processing to unwind the
encoded knowledge.

In previous work, we have developed models of information and control that are compatible with
qualitative modeling while retaining the computational characteristics required for real-time

operation [1]. This work has resulted in mathematical models, programming languages, and
experimental systems that represent initial steps toward a theoretically grounded design theory
for intelligent agents.

To date, however, our main focus has been on modeling how actions affect physical states of the
environment; relationships between an agent's actions and information later available to the

agent were not explicitly considered. This allowed simplification of the problem, but left open
many interesting issues. Treatment of these issues is especially critical in applications where
sensory resources are limited and must be allocated carefully while still producing sufficient
information to support task behaviors.

The main goal of this project has been to extend previous work by considering problems of
active information-gathering explicitly, by developing new techniques for analysis and synthesis,
and by exploring aspects of information-gathering in computational perception, learning, and
language.

1.2 Summary of Approach and Results

Two concepts are central to the design of intelligent agents: "information" and "action". An

agent's intelligence resides precisely in its being able to discriminate situations where differential
action is called for and in being able to map those discriminated states coherently over time to

overt actions that achieve its goals. In short, an intelligent agent must know what's happening
and do the right thing.

Our approach attempts to relate two points of view on how to talk about information and action.
The first, inspired by control theory, emphasizes causal feedback paths and the resultant
synchronization between agent states and world states. This approach views information as
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correlation,andactionasa triggeredresponse.The secondpoint of view, inspiredby cognitive
scienceandformal modelsof reasoning,emphasizessymbolicdatastructures,their interpretation
by designers,and their role in means-endsreasoningresultingin rationalaction. The approach
we takein relating theseviews is to attemptto align them. In otherwords,we designsystems
whereobjectivecorrelationandstipulateddenotationline up.

This is especiallychallengingwhere the information-updatemachineryand the information-
exploitationmachineryarebothunderthecontrol of thedesigner.Objectivecharacterizationsof
theresultsof action,to theextentthattheyaffect theperception,canonly truly begivenoncethe
perceptualmachineryis fixed. But fixing the perceptioncomponentprematurely,before an
analysishas beendone of the spaceattainableby potential action strategies,may lock out
necessarypartsof the informationspace.This circularityseemsto arguefor iterativerefinement
asadevelopmentstrategy

Our theoretical investigationsproceededas follows. First we analyzed agents into their
perceptualandactioncomponentsandidentifiedthesewith aspectsof a state-machinemodelof a
control system. The mathematicalpropertiesof eachwerecharacterizedin isolation andinter-
actionsandsynthesistechniques,includingcombinatorialconstructionsanddeclarativemethods,
were investigated. Finally, the interactionsthat arisebetweenperceptionand action selection
were studied,along with issuesof probabilistic uncertainty. Theseinvestigationsare sum-
marizedin Section2 of thisreport.

In parallel to these theoreticalstudies,we consideredthe phenomenonof active information
gatheringin a realisticphysicaldomain. We chosevisual processingasa challengingtestcase
anddevelopednew approachesto activevision, asdescribedin Section3.1 Situatingour work
within the activevision paradigm,we developeda conceptof "minimal meaningfulmeasure-
ments" suitablefor demand-drivenvisual processing. We thendevelopedanarchitecturefor
interpretationand recognitionof visual information that, in state-machinefashion, maintains
persistent,meaningfulrepresentationsof the world. This architectureallows for incremental
updates,the representationof partial information,incrementalrecognition,and theexploitation
of statisticalinformation. Experimentswith an initial implementationof this architectureare
described.

Two othermodesof informationgatheringwere studied. The first was learning,which differs
from activeperceptionin that only a weak,"universal" modelof thetaskdomainwasassumed,
ratherthan the kind of detailedmodelsof the physicalworld that typically underlieperceptual
research.The purposeof our investigationwasto uncovertechniquesfor copingwith someof
the combinatorialcomplexityassociatedwith currentreinforcementlearningtechniques.These
resultsarepresentedin Section3.2. Finally, weexploredinformationgatheringthroughexplicit
linguistic action by consideringthe natureof conversationalrules, coordination,and situated
communicationbehavior.Theseinvestigationsaresummarizedin Section3.3.
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1.3 Project Highlights

A Publications

• Leslie P. Kaelbling, completed a book on learning in embedded systems, based on her thesis
work, (now published by MIT Press).

• H.K. Nishihara, "Minimal Meaningful Measurement Tools," Teleos Research Technical
Report No. TR91-01, June 1991, revised October 1991.

• David Chapman and Leslie Pack Kaelbling, "Learning from Delayed Reinforcement In a
Complex Domain," Teleos Research Technical Report No. TR90-11, December 1990.

• David Chapman, "Computer Rules, Conversational Rules," Teleos Research Technical Note.
Also to appear in Computational Linguistics.

• Matthew Turk and Stanley J. Rosenschein, "A Vision Architecture for Perceiving Human
Action," working document to appear IJCAI-93 Workshop on Looking at People: Recog-
nition and Interpretation of Human Action, Chambery, France, August, 1993.

• Stanley J. Rosenschein, Extended Abstract, IFIP-92, Madrid, Spain, August 1992.

• Philip Kahn, "Building Blocks for Computer Vision Systems," IEEE Expert, to appear.

B Presentations

• NASA Day: Program Status Review for NASA Ames FIA Branch Chief, COTRs, and
technical personnel, 6 December 1991.

• AAAI tour presentations. Laboratory tour for attendees of AAAI-92/IAAI-92, 16 July, 1992.

• David Chapman presented a paper on work carried out jointly with Leslie P. Kaelbling on
learning from delayed reinforcement in a complex domain to IJCAI-91, Sydney, Australia.

• Keith Nishihara presented a paper on Minimal Meaningful Measurement Tools at the AAAI-
91 symposium.

• Stanley J. Rosenschein presented a respondent's position paper at Stanford University on the
subject of the semantics of embedded computation.

• Stanley J. Rosenschein, presentations to Robotics seminar, Stanford University.

• Stanley J. Rosenschein, presentations to SIGLUNCH Group, Stanford University.

• Stanley J. Rosenschein, presentation to NASA SOAR Conference, Houston, Texas, 1992.

• Stanley J. Rosenschein delivered a presentation on formalisms for reactive multi-agent
systems at a symposium organized by the Electro-Technical Laboratories, Japan, 1991.

• Keith Nishihara and David Chapman made presentations on active vision to the AAAI Fall
Symposium at Asilomar, 1991.

• David Chapman, delivered a presentation at the Las Cruces, NM Workshop on the
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interactionof perceptionandlanguage.

• StanleyJ.Rosenschein,presentationto IFIP, Madrid,Spain,August,1992.

C Other

• Several project team members participated in the Active Vision Workshop, Chicago, 1991.

• Keith Nishihara was chosen to head a committee on Hardware (electronic): Computer

Architectures, Real-time Image Processing, Foveal Sensor Arrays.

° Stanley J. Rosenschein participated in the Inter-Center Working Group meeting held at
NASA Ames, 1993.

° Stanley J. Rosenschein participated in an Air Force Joint Development Laboratory meeting

on the subject of real-time planning and control, Utica, NY.
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2 Theoretical Considerations

2.1 Motivation and Overview

We are surrounded in nature by organisms that are aware of their environments and that act in

ways we perceive as purposeful. These biological systems interact continuously with their
physical surroundings, monitoring changes and generating actions through thousands of input
and output channels. Even with relatively slow neuronal computing elements, natural organisms
are able to discriminate among a staggering number and variety of situations and produce
intricate behavioral responses in milliseconds. This capacity for real-time, goal-directed activity
has inspired researchers to inquire into the fundamental nature of these phenomena and to
attempt to duplicate them in artificial systems. In addition to the obvious intellectual interest of

such an endeavor, there are huge practical benefits to be derived: Intelligent monitoring and
control "agents" hold the promise of revolutionizing almost every area of human activity, from
medical care to factory automation, transportation, and management information systems.

In many ways, conditions are ripe for developing intelligent control technology. At the concept-
ual level, much is known about the nature of goal-directed activity. The fundamental principles
of feedback control systems have been understood since the 1940s, and an impressive body of
theory has been developed over the years. Cognitive scientists have studied symbolic infor-
mation processing in goal-directed agents and have produced semantically rich models of
representation structures and means-ends reasoning. On the technological side, the state of the
art in hardware components, including sensors, actuators, and computers, has advanced rapidly
in recent years, and software systems, including real-time systems and symbolic processing
systems, have reached a relatively high level of sophistication.

Despite these advances, a systematic design theory for complex intelligent agents does not
currently exist, in part because of the inherent tension between two cornpeting requirements. On
the one hand, the designer of a system must be able to express the content of his domain and task
model - what is being assumed about the environment and what is desired of the agent - in a
form that is understandable and convenient. On the other hand, as in all engineering disciplines,
he must produce realizable designs that will operate within resource limits. No existing para-
digm has produced exactly the right combination of models and design techniques to resolve this
tension for intelligent, real-time agents. The symbolic-reasoning paradigm, while well suited to
modeling complex, unstructured domains, has generally fallen short on real-time performance
and the demands of interfacing to physical signals. The control-theory paradigm, on the other
hand, has been most successful in highly structured domains, especially quantitatively modeled
domains, but has not provided adequate tools for treating less structured problems.

Ultimately, we require a paradigm which combines the best of both approaches. The paradigm
would offer modeling structures for expressing qualitative, fragmentary, and heterogeneous
information about the task domain, as used in declarative AI knowledge-based systems. These
symbolic models might then be converted systematically into real-time controllers, just as plant
models expressed in the right equational form can be manipulated by control-system designers
today to yield optimal controllers. Naturally, because of the approximate nature of qualitative
modeling, we would expect the paradigm to guarantee only "approximations" to optimal agents.

Although we are far from having this design paradigm today, some initial steps have been taken.
The key has been to generalize the notions of information, action, and goal from the narrow
quantitative setting of classical control theory to a richer, more universal setting. This work has
been undertaken across a broad front by discrete-event control theorists, computer scientists, and
AI researchers [2,3,4]. Work has also been directed at relating the generalized models to
symbolic languages and automated deduction in an attempt to reduce the programming burdens
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associatedwith intelligent-agentdesign[5]. A major focusof theseeffortshasbeento develop
robusttechniquesfor tradingoff semanticrichessand computationalcomplexity in the agent's
run-timerepresentations.

An interestingvariationon thedesignproblemariseswhenthegoaldescriptionsthemselvesrefer
to information, that is, whenthe agentis describedaspursuinga changenot in the stateof the
environment,but in its own internalstate. In somesense,thisrequirestheagentto incorporatea
modelof how its actions,througha causalchainthatpassesthroughtheenvironmentandits own
sensors,circle back to affect its own future informationstate. As we shall see,this situation
raisessubtletiesthat canbe illuminatedthroughananalysisof information,action,andinternal
informationflow.

We beginby consideringthe fundamentalnatureof physical systems,the phenomenaof infor-
mation andcontrol, andthe useof automataasmodelingtools, with specialfocuson semantic
issuesof representationin embeddedsystems.This is followed by a treatmentof thetwo main
componentsof an agent: the action-selectioncomponentand the perceptual,or information-
update,component. In eachcase,we first model the pure phenomenon(goal-directedaction,
perceptualupdates)abstractlyandconsiderapproachesthatmight easethesynthesisproblemin
practicaldesigncontexts. We theninvestigatethe interactionsbetweenperceptionandactionin
systemsthat act to gain information. Finally, we considerprobabilisticmodels that could be
usedto extendouranalysisof activeinfom_ationgatheringto situationsof uncertainty.

2.2 Information and Control in Physical Systems

Because intelligent-agent design is inherently concerned with causal influences between an agent
and its environment, it is natural to begin our discussion of agents at the level of physical
systems. All physical systems involve the interplay of space, time, and state. These elements
can be modeled in many ways, depending on the purpose at hand, as can the lawfulness of their
interrelationships. Classical physics, for example, models space as Euclidean, time as the real

line, and state as the distribution of matter and energy in space-time, subject to deterministic
laws, often given in the form of differential equations. At the level of everyday experience, we
model the natural world in terms of material objects that exist in various macroscopic states and
interact with one another in more or less predictable ways. Relativistic and quantum models
make use of yet another set of notions.

Systems distributed in time and space can be partitioned, or decomposed, into subsystems with
defined interfaces across which causal influence flows through so-called "inputs" and "outputs".
The decomposition of central interest to us here is the partitioning of a physical system into two
cross-coupled components, the agent and its environment, as illustrated in Figure 2.1. The state
of each component evolves over time as a function of its own immediately prior state and input
taken from the output of the other component.

The principles underlying systems of this type were first formulated by Norbert Wiener in the
1940s as the theory of feedback control [6]. The key insight is that signals entering the agent and
carrying information about the current state of the environment can be used to generate control
signals that cause the environment to behave in desired ways. The mathematical models used to
describe feedback control systems have been elaborated through several decades of research in
control theory and used as the basis for many practical control applications.

v
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Agent

Figure 2.1

The states of an agent and environment in a cross-coupled control system can be modeled

continuously or discretely. Continuous models are most useful when the phenomena of interest
are very close to physical quantities. When, instead one seeks to capture only coarse or quali-
tative distinctions among physical events occuring at locations occupied by a system component,
it is more natural to employ discrete states, and in such cases, it is also natural to use automata as

a mathematical model.

Automata come in numerous varieties, including deterministic, non-detenninistic, and probabi-

listic; they can be finite or infinite and can be decomposed and physically realized in many
different ways. Treatment of these issues in their full generality is beyond the scope of this

report, but we shall introduce one particular type of model, the non-deterministic automaton. A
non-deterministic automaton, A, is defined to be a 6-tuple, (S,i,O,init,next,out), where S, I, and O
are the sets of states, inputs, and outputs, respectively. The set init, a subset of S, represents

possible initial states. The transition relation, next, is a subset of S × I × S, and out is the output

relation, a subset of S × I x O. When state s' is a possible successor to state s under input i, we

write next(s,i,s'). Similarly, when o is a possible output in state s under input i, we write

out( s,i,o ). In the deterministic special case, the transition and output relations are functions, and

init, the set of initial states, is a singleton.

The study of control systems whose components are automata, or discrete state-transition

systems, has been the domain of discrete-event control theory (for example [4]), and researchers
have developed a variety of methods for analysis and synthesis. Most of these techniques

employ direct combinatorial methods. That is, they require that the environment automaton be
represented as a graph, with all its states and state transitions enumerated explicitly. From this
graph, one then computes the desired control automaton. As the number of states of the
environment increases, however, the use of direct combinatorial methods becomes problematic

and other methods are required.

One category of alternatives involves the use of logical techniques to reason about control
behaviors. Logical methods are appealing for modeling ordinary situations because they allow

designers to express their knowledge of a domain in convenient linguistic form, a fact at a time.
A variety of powerful logical systems have been invented for describing action, change and
information. These have been used by philosophers to study commonsense reasoning and by

computer scientists to state and prove properties of programs. Typically the syntax of these
languages resembles that of first-order logic, but with special operators added to capture the
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temporal or other properties of the systems being modeled. By formally describing the
environment and task requirements as a set of logical formulas, one can generate provably
correct control systems by logical manipulations. Unfortunately, except in very special cases,
open-ended reasoning within rich temporal logics is not constrained enough for practical
situations, which require a more disciplined, less open-ended approach. Just as direct methods
failed on the combinatorics of large state sets of the underlying automata, direct logical methods
fail on the combinatorics of inference and search.

In previous work [1], we have attempted topreserve some of the advantages of logical methods
while adopting a more structured design methodology. Our approach has been to attach
information-theoretic interpretations to system states using automata models, and to do this in a
way that allows the objective content associated with representational states in the machine to be
specified in a form human designers can understand. States of an automaton can be assigned
informational interpretations, expressible in logical notations, by associating those states with
environmental conditions with which they are objectively correlated or with which they co-vary.
In other words, a machine in state s is viewed as carrying the information that p if the
environment always satisfies p when the machine is in state s. When one views the state of the
automaton from this informational perspective, it is natural to identify next and out with their
information- and control-theoretic roles, namely keeping information updated and synchronized
with the environment, and selecting actions based on current infomlation. These issues are

explored more fully in the following sections.

2.3 Pure Action

We begin by considering control in a very simple setting, namely stimulus-response systems that
map current inputs to outputs without any dependence on prior inputs. At each instant, the inputs
carry information about the immediate state of the environment, but the agent has no internal
memory by which to distinguish otherwise similar states through "residues" of past experiences.
In the automaton model, the state set of a stimulus-response automaton contains only one state,

and inputs are simply passed on to the output relation. This is illustrated schematically in Figure
2.2 (the label "id" designates the identity function on inputs). Ahhough stimulus-response agents
are extremely limited, they are complete agents, nonetheless, and constitute a relatively easy-to-

analyze leading case.

Agent

Environment

I"-

Figure 2.2
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By what criteria can a stimulus-responsesystem,or any action-selectionsystem,be judged
successful.'?A natural way to answerthis questionis to relativize "success"to somestated
"goal" specificationthat is takento bepartof theproblemstatement.Different familiesof con-
trol problemsarise,dependingonwhatis meantby theterm"goal."

Onedimensionof variability in defining goalshasto do with fixed vs. dynamicgoals. With
fixed goals(or design-timegoals),action-selectionmappingsareevaluatedrelative to theentire
trajectoryof statestheyengender.To modelan agentaspursuingdynamicgoals,on theother
hand,assumessomemethodfor definingmoment-to-momentvariationsin what theagentseeks.
Evenwith dynamicgoals,theagentis seenashavingat leastthefixed goalof actingrationally,
that is, at each momentselectingactions consistentwith its current goals and information.
(Interestingsubtletiesarisein pathologicalsituationswhereagentsmight preserverationalityby
choosingnot to wantor not to know.)

Anotherdimensionof variability in goaldefinition hasto dowith complexity of thegoalandthe
form in which it is expressed. Goal complexity can vary from that of maintainingsimple
environmentalinvariants, to satisfying arbitrary temporal predicates,to optimizing complex
numerical evaluation criterion (e.g., maxinaizethroughput while minimizing energy, with
complex tradeoffs). Regardingthe form of presentation,complexity can vary from a simple
enumerationof states,for goals of maintenance,to complex formulas in expressivelogical
languages,closedunderBooleanoperations,quantification,andrich temporaloperators.

Becausein extremecases,agentsynthesiscan bearbitrarily intractable,it is not a reasonable
objective to try to developuniversalsolutionmethods. Rather,it is preferableto develop a
methodologyfor specifyingparticularaction strategies,andto developan inventoryof solved
specialcasesthat canexpediteagentconstructionin practicalsituations. As with goal specifi-
cation,the specificationof action-selectionmappingscan takemany forms,directand indirect.
One family of direct methodsincludesnotationsfor defining functions of one or more input
variablesin a suitablelanguage,suchaslook-up tables(only in very simplecases),functional
expressions,circuit descriptions,or data-flowgraphs. A relatedfamily of methodsusesthecal-
culus of relations rather than functional expressions,in somecaseswith a determinization
operatorapplied as the last step, after the output relation has beencomposedby applying
operationslike union, intersection,andrestrictionto primitive relations.The base-levelrelations
canberepresentedeitherenumerativelyor in morecompactform. In manyways,the symbolic
notationusedby Gapps[5] providesa declarativeoverlay for what is at the corea relational
calculus,andprovidesaconvenientwayof manipulatingpartially-determinedstrategies.

Indirectmethodsdefinetheaction-selectionmappingby deriving it from somedescriptionof the
environmentandthegoal,whetherin thefore1of anexplicit combinatorialobjectlike agraph,or
in theform of declarativeassertions,suchasoperatordescriptionsfoundin classicalAI planning
systems.To illustratehow astimulus-responseagentcanbeconstructedalgorithmicallyfrom an
explicit descriptionof an environmentand goal, we consider the specialcaseof agentsthat
maintaininvariants. Although themethodillustrateddoesnot scalewell with largestatesets, it
doesintroduceimportantconceptsandbuild up intuitionsaboutpropertiesof actionstrategies.

A stimulus-responseagentthatmaintainsinvariantscanbesynthesizedasfollows:

Let the environmentberepresentedasa non-detemfinisticautomaton(S,l,O,init,next,out) which
outputs its full state as output. In other words, the output set 0 is identical to the state set S and
the output relation out is the identity function on states. Let the goal be represented by G, a sub-
set of S, that the agent is to maintain as an invariant condition.

Working from G, we can compute a kernel set G', with the following properties: (1) G' is a
subset of G (i.e., staying within G' guarantees that G is preserved) (2) for every state s in G',

9



there is an action in I that the agent can take which will keep the environment in G'. G' is

calculated by starting with G and computing a sequence G o, G 1..... G n of subsets of G. G o is the

initial goal set G, and each successive element Gk÷ 1 in this sequence is obtained by regressing its

predecessor G k back through the next-state relation and intersecting the result with the set G k.

This regression is carried out by finding all predecessor states s such that there exists an action i
that has the property that for all states s', if next(s,i,s') the s' is in G k. In other words, we seek

states from which we can assure our ability to stay in G k for at least one more step. The process

terminates when a fixed point is reached, i.e., the successive element equals its predecessor. The
action strategy is extracted from the fixed point G' by constructing the function that takes each
state s in G' to an action i such that all successors of s under i are in G'. If no such action
exists, or if G' is disjoint from init, the original problem was unsolvable. A variant on this
method will work even in cases where out is not the identity function.

As mentioned above, this construction does not scale well as the number of environment states
increases, and this motivates the use of other representations. Although ordinarily used to handle
run-time goals of achievement, the declarative operator descriptions used in AI planning

systems, encode the same information as state-transition graphs, and can be used to drive the
construction above. Operator descriptions provide a more intuitively interpretable fom_ of

expression and can often be manipulated more efficiently because they refer to large subspaces
of the state space with terse symbolic labels. Rather than calculating G' through enumeration,

operator descriptions allow it to be calculated through symbolic regression. This may be more or
less efficient that the alternative, depending on specifics of the problem domain.

The Gapps approach [5] is also based on symbolic representations, but with different semantics.
Rather than attempting to describe the objective effects of primitive actions, Gapps provides a

language for eliciting from the designer a set of problem reduction statements which express his
intuitions about how complete strategies, or policies, can be broken into compositions of simpler

sub-strategies, typically specialized to particular types of situation. At the level of primitives the
two formalisms converge. As mentioned above, the operational semantics of Gapps is based on

a relational calculus.

Up till now we have been assuming that inputs from the environment are sufficiently
informative, in that they encode all the world-state infommtion needed to drive action. In cases
where less information is available, the inputs to action selection must be derived by accumu-

lating partial infom-mtion over time, and for this purpose additional machinery is necessary. We
refer to this additional machinery as the "perception system" and explore its properties in the

next section.

2.4 Pure Perception

As in the case of action selection, it will be useful in approaching perception to begin with a

study of the "pure" phenomenon. By pure perception we mean agent-environment systems in
which the outputs of the agent have no influence on the environment at all, and the agent is

simply a tracking system, or monitor - a passive observer, seeing, but not seen by, the
environment. This special type of agent, again, will be of limited practical use but does
illustrates the essential features of infonnation extraction. The setup for pure perception is
illustrated in Figure 2.3. The lack of influence of the agent on the environment cannot be

depicted graphically; it has to do with the details of the next relation of the environment

automaton and its insensitivity to agent outputs.
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Agent

Environment

"1_1___

Figure 2.3

The focus in analyzing the perception module is on the kind of correspondence maintained
between its states and states of the environnaent. This correspondence, in fact, is a form of

invariant of exactly the type investigated in the previous section, but over the states of the agent-
environment pair rather than just the environment. Even when the environment is indifferent to
the actions of the agent, it makes sense to ask how the perception component might be designed
to maximize the degree of correlation between its states and those of environment, hence maxi-

mizing its information.

To see this most clearly, consider an environment, modeled once again as a non-deterministic
automaton (S,l,O,init,next,out). What is the maximum amount of information encoded in an
instantaneous input? In general, the best we can do is to associate to each input o the set of
environment states with which it is compatible (i.e., those s such that out(s,i,o) for input o and

last agent action i). What is the maximum amount of infomaation about the environment that
could be accumulated by the agent automaton over time? Given a rich enough inventory of
internal states, a pure perception agent could optimally track the environment by having states

isomorphic to the powerset of environment's states, by having its initial state correspond to the
environment set init, and by having its transition function be that function which maps state Sj to

S 2 precisely when every environnaent state s ' in S 2 is reachable front some environment states

in S 1. This might be a cumbersome automaton, indeed, but its tracking behavior would be

optimal.

Although as the number of environment states rises, the powerset construction quickly becomes
infeasible, it is useful as a thought experiment because much of its value can be preserved

through efficient but information-rich approximations. Mathematically, these approximations
are homomorphic images of the ideal "powerset" automaton, and thus are consistent with - but
not as complete as - that ideal, or optimal, tracker. Nevertheless, these homomorphic images
allow useful information to be monitored, while carefully trading off computational space and

time, under the designer's control.

One simple approach to constructing homomorphic projections of the powerset automaton is to
" ' """ nt"choose a set of "interesting" or s_gnmca states in the powerset automaton, and close these

under union and intersection. The result is a lattice, which will be a sub-lattice of the powerset
Boolean algebra. The construction of the initial state and transition-function of the perception

system then proceeds as in the case of the powerset automaton above, but with the "true"

v
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powerset elements approximated by least upper bounds in the sub-lattice. For example, if in the
original powerset automaton the transition function maps a state to a successor state that is not an

element of the homomorphic-image lattice, the element of that lattice which best approximates
the successor state will be returned instead. Thus the lattice transition function "approximates"
the optimal transition function and degrades gracefully with the precision of the representation.
The lattices themselves would typically be Cartesian products of simpler lattices, with elements
that could be represented compactly as parameter vectors.

This technique formed the basis of the Ruler system described in [7]. Ruler takes an approach
analogous in many ways to AI planning systems. In Ruler, the environment is described by a set
of assertions, including temporal assertions which describe conditions that are either true initially
or that will be true in the next state, depending on current conditions. The Ruler compiler
synthesizes perceptual machinery (an initial state and next-state function) by chaining together
these individual assertions - not with a view toward constructing action sequences, but rather
with a view toward computing descriptive parameters in the next state's world model. The use of

lattices as the semantic domain of interpretation of the model parameters, along with effectively
closing the parameter space under intersection, allows incremental information to be folded in
nicely and leads to a compositional methodology for constructing perceptual update mechanisms.

While conceptually adequate for generating provably correct perceptual subsystems, at least for

non-probabilistic domain models, Ruler was limited in that it made no special provision for
modeling worlds in which objects and their properties and relations were of special importance.
This is the case, for example, in visual perception where objects move in and out of view, and a

prime form of information to be extracted from the scene concerns the identity of objects and
their spatial relations to one another and to the observer. To begin to address domains of this
type, we developed an information-update schema we named Percm.

The Percm schema can be thought of as a specialized form of Ruler in which a finite, but

shifting, set of objects are being tracked and described. The descriptions are represented as
labeled graphs, with node labels representing unary properties of objects, and edge labels rep-
resenting binary relations between objects. One of the objects is the agent/observer, and the rest
of the objects can vary, moving in and out of attentional focus. This scheme bears some

relationship to the indexical-functional representations developed by Chapman and Agre for
Pengi, but with rigorous correlation-based semantics. The node and edge labels are drawn from

a space of data values representing lattice elements, just as in the Ruler case, only now the
propositional matrix is fixed (i.e., a fixed conjunction of properties and relations) and the lattice
elements are constrained to be of semantic type "property" or "relation", or to be coercible to
such values.

The update cycle for this graph is similar to Ruler's, but in the Percm context, fixed background
descriptions of the environment are provided not in the form of propositional assertions about

world-state transitions, but rather as rules, both temporal and atemporal, for computing object
properties and relations. This infomlation is buih into a set of operations used to update the
relational graph. These operations are:

create

propagate

maps an input value to initial object properties
and relations inferable from that input;

strengthens properties and relations among objects
x and y by deriving what can be inferred from existing
properties and relations between each ofx and y and
some third object, z (cf. triangulation):
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merge

degrade

combinesdescriptionsof objectsx and y if their
properties and relations imply that they are identical;
maps properties and relations at time t to new values
inferable for time t+ 1;

aggregate creates a new object y whose existence can be inferred
from the existence of constituent objects x I .... ,x,, with

appropriate properties and relations, and initializes y's
description based on descriptions of constituents.

The perceptual system is synthesized by composing and iterating these operations to update the
graph of object descriptions, with values again drawn from lattices to obtain gracefully degrading
approximations. Because Percm is a finite schema of bounded size, to complete the specification
of an instance of the Percm schema, the designer must also define how, in the case of object
overflow, objects are to be discarded or withdrawn from active attention.

2.5 Putting It All Together - Acting to Gain Information

The techniques illustrated in the two previous sections can be combined directly to synthesize
control systems containing both perception and action components. For instance, using the
Gapps approach, one could develop mappings from infommtion states to actions, where the
information states are the output of a perceptual subsystem synthesized using the Ruler or Percm
methodologies. If there were no interactions among design decisions needed for the two
subsystems, the definition of the "information state" of the agent would act as a clean interface,
and the combined system would exhibit the intended behavior. In general, however, there are
interactions, and in this section we explore the nature of those interactions and how they might
be dealt with.

First, there is the issue of how the information-state interface is arrived at in the first place. This

question is of concern even in the case of a degenerate perceptual mechanism. One reason has to
do with the information-theoretic adequacy of sensor inputs and the computational complexity of
mapping sensor readings to actions; the information needed to drive action selection may simply
be absent or impossible to extract with available computing resources. Also, certain strategies
may require information flows that are impossible to sustain; when choosing action strategies,
attention must be given to how actions chosen now maintain the flow of information necessary
for distinguishing anaong future states to be acted on. In AI, this problem often goes under the
label of the "knowledge precondition" problem: It is not enough to be in a state when a certain
action is appropriate; one must know what that state is and which action is appropriate.

The problem grows more complex when perceptual machinery distills information contained in
the sensory input stream, and still more complex when the goal itself pertains to affecting one's
own information state. In these cases, the internal structure of the perception module is, from the

point of view of the action-selection module, part of some external environment whose dynamic
properties are critical to the success or failure of its strategy. Unfortunately, without elaborating
the internal structure of the perception module first, statements of fact about this "environment"
cannot be made, and hence no valid action strategy can be chosen. In general, action strategies
intended to satisfy information goals are only coherently developed in the context of determinate
perceptual machinery.

A natural development methodology, then, would be to design the perception module first,
choosing conditions to be tracked and defining update circuitry that tracks these conditions in the
passive sense introduced in the previous section, but which does not guarantee the input streams
that will force it to the right state. After defining this fixed machinery, an action strategy can be
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defined, relying on the definition of the perception component as if it were part of the environ-
ment. This strategy is designed to cause input streams flowing into the perception component to
drive it into the appropriate states and actively makes use of constraints imposed by the pre-

viously chosen structure of the perception module. In principle, when perception and action
modules are generated from declarative domain descriptions, a single set of facts about the
environment should suffice to generate both modules. In other words, Ruler-like state transition
rules, combined with operator-description-like action descriptions, contain enough constraints to

generate systems that seek information. The Ruler rules generate a perceptual system that
maintains, as an invariant, correlations with conditions that the action system needs to test. This

approach can involve a search, albeit at design time, for suitable conditions that can be

effectively tracked.

In all of these approaches, the output is an automaton with an objective information-theoretic
relation to its environments, unlike the usual case in AI when analysis of knowledge pre- and

post-conditions has been undertaken in the past using theories that link internal states of agents
to their environment only through stipulated semantic-denotation relations attributed by de-

signers somewhat arbitrarily to symbolic data. This distinction is substantial, and it is
encouraging that many of the same semantic desiderata that have been pursued in traditional AI
planning and representation systems can be achieved in a more mechanistic, and potentially far

more efficient, control-theoretic setting.

A final area of complexity, and one which dealt with in some of the empirical research reported

in other parts of this report, have to do with uncertainty in natural environments. We have been
modeling uncertainty using simple non-deternainism. While this allows designers and machines
to avoid committing to infommtion they do not possess, they are extremely conservative in that

they regard all alternative states that are not ruled out by hard constraints to be of equal
importance. In real task domains, however, some of those alternatives are far more likely than
others, and this fact is essential to the proper exploitation of the infomaation. A model that is
midway between detemfinistic and non-deterministic models is the probabilistic model in which
state transitions, under a given input, are described by, probability distributions. A natural
mathematical model for such systems is the Markov process, which has been studied extensively

by applied mathematicians.

The difficulty in using probabilistic models together with the symbolic techniques described
above have to do with the nonmonotonicity of probabilities, which leads to non-composi-

tionality of the design technique. By conditioning on further evidence, the probability of a

proposition can, in general, be reduced or increased. This means that a designer cannot, in
general, define a module of the perceptual component, prove a strong statement about the sem-
antics of its outputs, and then proceed to use that module together with other modules;
conditioning on the joint states of the modules may completely undermine the intended
semantics of the first module. Furthermore, the action strategy embodied in the action-selection

component is integral to the definition of the probabilistic state-transition matrix of the entire
system. Just as before when we could not, in principle, define an action strategy beforeproviding
a fixed definition of the perception component, here we cannot define the perception component
without constraining action first. The apparent circularity only points to the fundamental need to
consider the agent as an integrated whole; the behavior of the entire system - agent plus
environment - is detemfined only when all the boundary conditions have been specified. Interim
constraints and incremental refinement may be useful, but must be used cautiously, especially

when modeling domains probabilistically.

One simple conceptual extension to the Ruler and Percm approaches allows probabilistic

representation to be incorporated smoothly into the overall framework. When designing lattices
to represent information states, one can employ the lattice whose elements are mappings from a
given propositional lattice into the interval 10,1] under the natural ordering (a mapping is less
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thananotherif it mapselementslessthanoneanotherto pointsin [0,1] lessthanone another).
Finite representationsof theseelementscan be approximatedby addingconfidencevaluesto
parametricrepresentations,andwith appropriateadjustmentsto the updatealgorithmsgiven in
theprevioussection. The simplestsuchalgorithmswould maintaincompositionalityby adding
uncertaininformationconjunctivelyuntil a clashis detectedandthenresetthat parameterto the
vacuouspropositiontrue, with confidence value 1. The justification for the use of an algorithm
of this type could depend on global constraints such as ubiquity of evidence for certain pro-

positions or the unlikelihood of monitoring conflicting conditions for a long period without
uncovering evidence of the conflict.

In the research reported in this report, we have emphasized empirical approaches to uncertainty,
and the use of learning techniques. Results of these investigations are described in the sections

that follow.

w
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3 Specialized Modes of Information Acquisition

3.1 Gaining Information Through Visual Perception

A Background: Active Vision

ACTION SELECTION

(plans, strategies, behaviors, planning)

task-drive/_c__ _ task-driven

visio_¢ _.}i _._i!_n.'i.'_. X acti°ns

I/iiiiiiiiiiii!ilJi. 1111121i!i!ii:,=,.
PERCEPTION acnve vlsaon h. ACTION EXECUTION

reactive robot control _'_ (robotics)

Figure 3.1' Task-Directed Perception and Action Execution

The sophisticated performance observed in biological systems is to a large degree derived from
the fluent use of simple and robust measurement capabilities. The task being performed drives

how and when sensory actions are to be perfomaed. For example, experienced drivers apply
strategies for controlling where and when to monitor the position of the roadway, signs, and
other objects; inexperienced drivers are noted for their poor attentional control strategies. Such
active vision strategies are a key element of effective sensory robots in complex and uncertain
domains.

An active vision system leverages high-speed visual computations, electromechanical control of
sensors and mobility devices, and demand-driven control of these devices to achieve a directed

goal. A key element of active vision systems is that the), can be driven by the overall task and
goal achievement systems; for example, a mobile Unmanned Ground Vehicle (UGV) agent can
direct visual sensing to support its navigation and task goals.

By its interdisciplinary nature, active vision touches upon a number of fields, such as planning,
control, real-time systems and vision. Research specifically targeted for active vision is relative-
ly new. It has included fast recognition algorithms, selective attention mechanisms, movement

detection, visual tracking and depth-of-field control [8]. Recently, computer vision conferences
(e.g., ECCV, ICCV, CVPR) have included active vision tracks to describe work in this rapidly
growing field.

A key strategy used by active vision researchers has been the tight integration of perception,
action selection, and action execution. The interaction between perception and action execution
has been used to develop real-time active vision systems and reactive robot control. Action
selection is the "gamemaster" that can control what activities are pursued and how they are
performed; action selection can vary from generating constraints that affect local reactive

behaviors (e.g., by modifying desired speed) to more global action sequencing and selection
(e.g., task conflict detection and resolution).

I
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Hard perceptionproblemsareeasierto solve with a good setof primitive measurementcapa-
bilities. To be of practicalvalue, a visual measurementcapability must provide robust and
appropriatemeasurementsin timeto beusefulat acostthatis not prohibitive. Oneconsequence
is an increasedfocusondemand-drivenvisualmeasurementsasopposedto themore traditional
approachwhich attemptsto carry out a full sceneanalysisprior to making any use of the
informationderived. The traditional approachhas the disadvantageof beingcomputationally
expensiveanddoesnoteasilysupportthediffering needsof diverseapplications.

A demand-drivenstrategyplacesa premiumon defining a good setof measurements,that is,
measurementsthatareuseful,easyto interpret,robust,realizable,andfast. We havedefinedand
implementedan initial set of demand-drivenprimitives for real-time computationof stereo
disparityandvisualmotion whicharenoteworthyfor their speed,robustness,andwide operating
envelopes.Our continuingtechnologydevelopmenteffortsareaimedatraisingperformanceand
loweringthecostof measurementdeliverysystems.

A.1 Prior Work

Seminal papers in the field of active vision have been written by Bajcsy [9], Burt [10], Krotkov
[11], Aloimonos, Weiss, and Bandyopadhyay [121, and Ballard [131. In 1991, the NSF Active
Vision Workshop brought together workers in the field of active vision to assess the state of the

field and its future directions and needs 181.

Real-time stereo processing has been the goal of several groups. Matthies at JPL has developed
a fast stereo algorithm using sum of squared differences area correlation on a Laplacian Pyramid

[14]. His system was implemented using special accelerator boards for doing the convolution
with the correlation done on a fast single board computer. That system was able to compute a
dense 64 by 60 range map in about 2 seconds and a newer version promises to operate at sub-
second rates. It has been actively used for navigation and obstacle avoidance experiments on an
autonomous vehicle at JPL. The stereo camera system employed there had a fixed mount on the

vehicle looking forward.

The active-vision research at Rochester 1151 includes a real-time colored object search and

recognition system [16]. At its core, this process matches color histograms to detect the likely

presence of a familiar object. The quality of match ranks the set of candidate gazes for further
analysis. Additional research at Rochester includes a system for learning selective visual
attention mechanisms. Specifically, sequences of fixation points for visual analysis of objects
have been learned automatically. Also, methods were developed for fast movement detection,

tracking and motion-based figure-ground separation. Coombs demonstrated real-time vergence

tracking of people using a fast stereo matching algorithm 1171, l l 8].

Woodfill and Zabih at Stanford have done object tracking using sum of squared differences
correlation on raw gray level inaage data [19]. They were able to do real-time motion tracking of

a person walking back and forth using a Heathkit HERO robot for doing pan motions and a
Connection Machine for the processing.

Some active vision projects have studied the integration of visual processing and vehicle control.

Perceptual servoing, or rapid frame-to-frame tracking of visual targets, has been developed and

used by Fennema for UGV navigation [20].

A.2 Visual Attention in Active Vision Systems

Simple perception strategies can be composed to create more sophisticated perception behaviors.
The challenge to doing this productively lies in the design of control mechanisms for

implementing goal-oriented sequential measurement strategies.
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Taskbehaviorsprovide isolatedrobot skills thatfomathebuildingblocksof competence.In the
first systems,robotprogramswereconstructedby fixing theorderandfunctionof thesebuilding
blocks. Robotsin manufacturingalsotypically provideadetailedapriori specificationof robot
actions. Yet, a givenrobot taskor behaviorcannotanticipateall possibleoccurrencessincethe
ability to modeland control the environmentis necessarilylimited (i.e., openworld problems
exist [21]). This requiresthat tasksand the task mix beadaptedas new information suggests
changingconditions,uncertainty,shiftingpriorities,andtaskperformancelimitations.

The control of sensoryrobots must considerwhich tasks should be undertakenin light of
competingbehavioroptions, context, and constraints. Humansare quite adeptat this. For
example,while you areat yourdeskperhapsdoing severaltasksat once(e.g.,browsingthrough
electronicmail onyour terminalwhile listeningto theradioandthinkingaboutwhat youhaveto
do thatday), the phonecan ring (notingthat somewherewasa processthat detectedthe phone
ring and its significance),and someof the current tasks(dealing with email, the radio, day
planning) may be abandonedor postponedto service the phonecall. In the security and
surveillancedomain,detectionof anunexpectedmovingobjectmayrequirehaltingmanycurrent
behaviorsin order to invoke a behavior(s)that can determineits significance. The effect of
contextualinformationcanalso be moresubtle. For example,the detectionof an unexpected
moving object may reraderall noise-producingbehaviorsless desirable (to achieve greater
stealth),and this affectshow existing behaviorsexecute. A key aspectof intelligenceis this
astuteredirectionof attentionto newinformationor conditions.

Task-directedcontrol of activevision, robotics,andotheren_beddedreal-timeintelligentagents
operatingunderuncertaintyandfunctionallimitationsrequire:

• real-timebehaviorexecutionandcontrol.

• dynamicreconfigurationof currentrobotactivitiesto conformto changingenvironment
andtaskrequirements.

• information thatcanbeusedto prioritizebehavioraltasks.

• theapplicationof plannersandothermechanismsto focussystemattentionira
light of thecurrentcontextandtheoverallmix of currentactivities.

• flexible andstraightforwardprogrammingsupportfor modularsoftwaredevelopment
andintegration.

B Minimal Meaningful Measurements

B.1 The Intelligent Blind Person

The perceptual information a blind person needs about his environment and the character of aids

that prove most useful to him can provide practical guides for research in machine vision. In this
section we develop the concept of early vision nleasurement tools based on insight gained from
thinking about the needs of a blind person. There is a close analogy between the demands of
building a viable sensing aid for an intelligent blind person and those of building vision front
ends for active problem solving machines. We will follow this theme through the definition and
development of a demand driven stereo vision system.

In conversations with blind persons, a recurring therne has been the suggestion that to be

accepted, a visual aid must be easy to use, useful and cost-effective. Interestingly, there seemed
to be little desire for very smart aids. One individual even commented that he was not interested

in a machine that could compute the best path down the street for him, he wanted something that
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would help him find a lost sockon the bedroomfloor and maybehelp him matchit with other
socksin hisdresserdrawer.

We have intelligent usershere and what seemsto be called for are aids that such userscan
operateas tools to accomplishperceptualtasks. Following this line of thought, a desirable
perceptualaid ought to recover somebasicinfomaationand it shouldhave an easy-to-model
behaviorthat is sufficiently rich to allow anexpert to useit in creativeways. A blind person's
cane is a good example, it has a consistentmechanicalbehavior and it provides timely
informationaboutthepresenceor absenceof physicalobjectsat dynamicallyselectedlocations
abouttheoperator. Thecane"device" haslow-bandwidthinput andoutputinterfacesto theuser
- thatis, manualpointing controlandforce,vibration,andsoundfeedback.This allows it to be
managedeasilyby theblind userwhile carryingonotherparallelactivitiessuchasconversation.
Furthermore,thoughsimple, the canehasa fairly rich andconsistentbehaviorthat fostersthe
developmentof expertisein its use. For example,one learnsthe feel of different pavement
textures or conditions - slippery or uneven.

Compare the cane with a strawman device - a tv camera driving a 500 by 500 array of vibrating
needles attached to a user's back.

While it might sound like a reasonable thing to try, such a device has several shortcomings.
First, it is inefficient, providing far more infom_ation than any user's back could ever absorb.
One estimate is that the human tactile bandwidth supports something closer to what could be

presented on an array with just 100 pixels total [22]. This resolution is sufficient to inaage a
single printed character. For all but the simplest imagery, such as reading black and white text,
such displays have proven to be useless. The relationship between pixel intensity and physical
properties of the environment are too complex and cannot be solved in real-time by even an

expert.

We get a quite different result if we strip the strawman device down to a simpler 5 by 20 pixel
resolution that better matches the user's tactile input bandwidth and is tailored to display just a

single printed character at a time from a hand held scanner. Such a device is much more like the
cane and trained users have learned to read printed text with it at rates better than 40 words per
minute. _

The term 'measurement-tool' carries with it the connotation that the device has an easy-to-model

behavior that enables its operator to apply it skillfully in specific task domains, much as with the

blind person's cane or as an artist comes to know and use a brush. This suggests three guidelines

for designing measurement tools:

1. Simple but meaningful. The device should make the simplest meaningful measurement

possible. A stereo tool, for example, must use a pair of binocular images, but it need not
compute a dense range map over an extended field. How much can we simplify the

computation without changing the basic character of the measurement?

2. Easy-to-model. The device should have a consistent, easy-to-model behavior. If the
underlying algorithm has many special case behaviors, it becomes difficult for a user to
anticipate that device's behavior in new situations or possibly even in familiar ones.

3. Informative output. The device should exhibit a behavioral richness that encourages the
learning of strategies for making more specialized measurements with it. For example,
simply reporting best estimates of range from a stereo correlation tool would deprive the

1. A device of this sort called the OPTACON is manufactured by Tclesensory Systems of Mountain View,

California.

19



user of valuable information about the shape of the correlation peak. In various circum-
stances, that user might be able to use knowledge of the peak's height, its broadness in

vertical disparity, or its bimodality.

B.2 Early Vision Measurement Tools

The vision problem can be usefully divided into broad subclasses of computational modules
demarcated by the kind of information at their inputs and outputs [23]. One such class of

computations takes information about image intensity at the retina and yields information about
visible-surface properties that directly affected those intensities. This class of problems -
sometimes referred to as earl), vision - can be further subdivided according to the distinct

physical mechanisms by which visible-surface properties can affect intensity images. Some
examples are binocular stereo, structure from motion, shape from shading, and material from

color [24].

The measurement tool concept can be applied to the study of early vision problems to help us

define computational problems that are somewhat different from the problems that are
traditionally addressed. Instead of attempting to compute a complete visible-surface description
of a scene within a computational module, we will concentrate on single measurements. This

distinction can be significant when issues of interaction with higher level knowledge and control

are considered.

In the former case, the goal is generally to produce the best visible-surface representation

possible from the available input. Unfortunately, it has been very difficult to solve these
problems sufficiently well to meet the diverse demands of higher level user processes. It is

impossible to anticipate or efficiently support, in a purely bottom up fashion, all the possible uses
for the result of an early vision module. Attempts to do so have produced algorithms with

complex behaviors which often incorporate many specialized assumptions about the physical
scene. What is bad about this is that the application of assumptions is bound up in the early
vision modules and out of the control of the user who is often better situated to make decisions

about their application. This makes it difficult to bring higher level knowledge to bear on the

early analysis.

An alternative proposal is to structure the analysis around making the best possible bottom-up
visible-surface measurements at a single location. This makes it is easier to present more precise
information about what is known to the user. It can also allow him to better allocate processing

resources and interpret basic measu,'ements to accomplish the task at hand with increased
efficiently and precision. For example, a range measurement must be made over some finite
area, the size of this sensing area can be specified and controlled by the user. In addition, the

result can be presented along with a confidence assessment or even as a distribution. This opens
up possibilities for straightforward communication between higher and lower level processes. In
many instances, intuitive top-down control can be achieved simply through pointing the device

and setting the size of its measurement field (zoom).

Measurements such as average range or velocity over areas fit well into this characterization.

For example, in stereo matching, a measurement over a small sensing area may fail due to the
absence of matchable features. To recover, the user can try switching to a larger measurement
window or he can move the smaller window to a slightly different position. In either case, the

operator is aware of the changes made and their implications for the measurement. He is in
possession of knowledge of the task to be accomplished, he is aware of the measurement
difficulty and the character of the degraded information obtained. At the same time this user
does not have to know much about the workings of the measurenlent algorithm itself. The tool

can be treated as a black box so long as it has a simple and consistent behavior.

w_
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A tool of this sort should also open up opportunities for enhanced resolution through

manipulation of the tool. For example, a low spatial resolution range probe can be swept across
an extended straight edge while its output is monitored for a change, to get a hyper-resolution

reading of its spatial position. It may be that the sophisticated performance observed in
biological systems can be explained to a large extent by strategies like this involving the fluent

use of relatively simple measurement tools.

B.3 Demand Driven Stereo/Motion

To be of practical value, a visual measurement tool must be capable of providing robust and

appropriate measurements in time to be useful, at a cost that is not prohibitive. To accomplish
this, we have focused on demand-driven visual measurements. The first class of computations
studied extensively in this context have been image matching algorithms applicable to stereo

range finding and optical flow field measurement. We have developed a computational theory
for measuring stereo and motion disparity that is consistent with the measurement tool objectives
and we have had some success at demonsu'ating the validity of that model for biological systems.
We have also developed a practical real-time hardware implementation described later in this

section.

a Simple Area-Based Stereo Measurement

Much of the work on stereo vision algorithms in the past several decades has been guided by the

remarkably clear percept of filled-in surfaces one experiences when looking at random dot

stereograms even when the dots are sparse 125l. To make matters more challenging, these same
stereograms exhibited crisp depth edges, suggesting that the stereo process was doing its work at
very fine spatial resolution. This insight led to a flurry of research activity in the 80s on
developing surface interpolation techniques capable of taking sparse stereo measurements and
filling them in to make a smooth disparity map with sharp discontinuities like those we see in the
stereograms. But this is not the only way to look at this problem and it is not clear that our
perceptual experience with random dot stereograms implies the existence of an explicit filled-in

representation in the human system.

We advocate a counter position: No explicit interpolation is required to explain perceptual

experiences such as filled-in random dot stereograms. Furthemaore, stereo perception has
surprisingly poor spatial resolution but exceedingly good noise tolerance [26, 27, 28]. In this
alternate model, the perception of sharp depth edges would be explained as illusions fostered by

the presence of luminance boundaries much as occurs in color vision. The compelling percept
of a filled-in surface is explained simply by the turning on of a low resolution symbolic flag
indicating consistency with a smooth surface. An example of such an indication would be a

high, sharp correlation peak in stereo matching. No explicit filled surface representation appears
to be needed to explain psychophysical performance. This position and the idea of area-based

measurements fits well with the measurement tool concept.

b The Sign-Correlation Algorithm

Binocular stereo, the measurement of optical flow, and many alignment tasks involve the
measurement of local translation disparities between images. Marr and Poggio's zero-crossing

theory [29] made an important contribution towards solving this disparity measurement problem.
The zero-crossing theory, however, does not perfom_ well in the presence of moderately large
noise levels as has been illustrated by the inability of zero-crossing based approaches to solve

transparent random-dot stereograms [261 -which are solved by the human visual system.

In addition, because of a different mindset, most implementations of the zero-crossing algorithm
have been associated with cumbersome surface interpolation mechanisms which estimate likely
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disparities between the sparse measurements obtained on zero-crossing contours. In reality no
new information is added by the interpolation process [30]. Furthermore, it has been noted [30]
that the intent of the original zero-crossing theory could be preserved while significantly

increasing noise tolerance by doing area correlation on the sign of Laplacian of Gaussian (V2G)
filtered images. Rather than making pixel-wise measurements at sparse locations, we measure

average disparities in specified regions. Explicit interpolation is no longer required, large noise
levels can be tolerated, and most importantly, the broad sign correlation peak allows the direction
(near/far) in disparity to the peak to be determined from dif-ferential measurements at a few

locations. This greatly reduces the need for exhaustive search and allows accurate subpixel
estimates of the peak position to be made.

The same zero-crossing information favored by Mart and Poggio is used by the sign-correlation
approach, but the matching rule is changed from contour matching to area correlation. This
subtle change makes a significant difference in the behavior of the marcher. Sign-correlation
continues to provide useful disparity measurements in high noise situations long after the zero-
crossing boundaries surrounding the signed regions cease to have any similarity. An intuitive

explanation for why the two approaches perfon-n so differently follows from the fact that the sign
of the convolution signal is preserved near its peaks and valleys long after increasing noise has
caused the zero contours to be fully scrambled. Thus area correlation of the sign representation
yields significant correlation peaks even with signal-to-noise ratios of 1 to 1 as occurs with
transparent random dot stereograrns.

c PRISM-3 Implementation

Prior experience [30, 311 suggests that V:G operators with a center diameters, w, of at least 8

pixels - corresponding to a kernel diameter greater than 20 pixels - and correlation windows

with diameters in the range of 32 to 64 pixels are desirable for image matching applications.
Furthermore, these convolution computations must be carried out with the equivalent of at least
12 bits (and ideally 16 bits) of integer precision.

The sheer magnitude of the computation required to filter a pair of standard TV images at video

rates with general 20 by 20 operators - some 6.2 billion muhiply-adds per second - plus the
additional overhead of computing correlations would tax a state-of-the-art supercomputer.
However, by taking advantage of mathenmtical properties of the Gaussian convolution and

making use of standard TTL technology, we have been able to implement such computations in
the space of a few standard height VME bus boards.

We have just completed the design and construction of a third generation hardware accelerator

for the sign-correlation algorithm. The PRISM-3 system's configuration is illustrated in Figure2.

A nice property of algorithms tailored as measurement tools is that efficient hardware accele-

rators can often be designed to take advantage of their characteristics. In the case of PRISM-3,
the sign-correlator is designed to make measurenaents at designated locations in the image. This
makes it possible for a small device to make individual range or velocity measurements to
subpixel resolution in approximately 200 microseconds.
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Figure 3.2" PRISM-3 System configuration

The complete system consists of an active stereo camera head and a desk top processor box
containing all of the necessary' processing hardware. The camera head has a pair of pixel-clock
synchronized industrial cameras mounted on a head with pan, pitch, and vergence control. The
binocular stereo video from the two cameras is digitized and filtered in parallel by video-rate

Laplacian of Gaussian convolvers. Operator size is adjustable for a filter center diameter
between 1 and 16 pixels in 1/2 pixel increments (the largest operator has a full extent of 43 by 43

pixels). 16 bit integer precision is maintained throughout the convolution pipelines. A specially
designed binary correlator, capable of computing 36 separate one thousand point correlations in
parallel in 100 microseconds, is then applied to make stereo or optical flow measurements off of
the filtered images. A high-performance single board computer (SBC) controls the operation of
the convolvers and the correhttor and it evaluates mathematical formula for making subpixel

disparity measurements from their results. The SBC also carries out low-level disparity to range
conversions, controls the stereo camera head, and provides remote measurement services to

external users via ethernet or VME bus transactions.

d Measurement Tools

The disparity measurements we make with the sign-correlation algorithm are averages over the
correlation windows we use. This implies a limited spatial resolution, but we have found that
this effect can be made to work for us in the design of a measurement tool that satisfies the three

objectives set out in section 3.1 .B. 1

2. The MAXbus digital video interconnect standard was developed by and "MAXbus" is a trademark of

DATACUBE, INC., Peab(xty, MA.

w
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i Interpreting Peak Shape

The correlation peak shape obtained for a window containing a distribution of disparities is
approximated by the convolution of that distribution with the single disparity correlation peak
shape [32]. Thus, for example, when the window straddles a depth edge between two flat

textured surfaces, the correlation function will have peak components contributed by both
surfaces in proportion to their presences in the window. If the two surfaces are sufficiently
separated in depth, two distinct peaks will be seen in the correlation surface. If the depth
discontinuity is smaller, those peaks will merge to form a peak at the weighted average disparity.

We can take advantage of knowledge of how such average measurements behave as the

correlation window is swept over, say, a sharp edge on a flat surface like a table top. This
knowledge of the tool's behavior coupled with the user's knowledge of his visual world allow
him to request measurement sequences that allow domain specific questions, such as where is the
table edge, to be answered with high precision [33].

Other properties of the correlation peak are also potentially useful such as the width of the peak
which may indicate the spread of disparities within the correlation window or the lack of
matchable texture in the images. The peak height also carries some information about the noise
level present.

ii Sign-Correlation Tool Design

The correlation peak shape appears to have the qualities we seek in a basic measurement tool -
simplicity, understandability, and a rich behavior. Our intention is to provide users of the basic

measurement system with access to the correlation peak shape so that discriminations like
finding the precise position of the edge of a table top can be made.

We have yet to determine what the best way of reportinu peak shape and position. Possibilities
include:

1. Report raw correlation measurements. This is simple and general, but leaves the
common tasks of computing peak position and width to the user.

2. Report peak height, width, and position. This does more work for the user, but makes it

harder to discover less common but important events such as muhiple peaks.

We plan initially to use the second approach but allow access to the full correlation data as well.

As more experience is gained, we hope to arrive at a more refined output representation for thetool.

B.4 Next Steps

Our current research effort addresses questions in active vision concerning the intelligent use of
measurement tools to accomplish tasks in dynamic environments.

a Figure-Ground Discrimination

One of the most basic problems in early vision is deciding what stuff goes together. Both
binocular stereo disparity and optical flow field measurements are well suited for helping to
separate out regions in the visual field that are coherent in range or motion. This is a form of
figure-ground discrimination and can be effective even at a fairly low spatial resolution. Rele-
vant tasks include:
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1. identificationof coherentregionsin stereodisparityor motion;
2. determinationof regioncharacteristicssuchasmeanposition,size,directionof

elongation;and
3. regionboundarysharpeningusingotherdatasuchasintensitychanges.

b Tracking and Following

Once we have a rudimentary set of figure-ground mechanisms operating, we will be able to focus
on tasks involving active tracking of objects. Some of tile tasks we plan to address include:

1. Stabilize image of moving figure on camera. This will involve investigation of motor
control system design to minimize figure slippage during

(a) steady motion,

(b) accelerating motion,
(c) figure in-plane rotation
(d) figure rotation out-of-plane.

.

Follow figures undergoing occasional occlusion behind other objects. This task will
build on basic stabilization routines, adding techniques for detecting the occurrence of an
occlusion and making use of the figure's past dvn,unics to make estimates of where to
look for it as time passes.

3. Make use of simple figure characteristics such as nlean gray level or texture statistics, or
color histogram to assist in following a fieure such as a person in a crowded room.

Attempt to use chan,e of vanta-e point to improve visibility of a figure being followed.

Functional Search

One of the motivating themes for the measurement tool approach has been the concept of using
those tools expertly to answer more complex task oriented questions. Examples of such ques-tions are:

1. Determine that a specified volunle of space is clear.

2. Ascertain the mean position, orientation and flamess of a patch of surface at a designatedlocation.

3. Determine the position of a straight edge on a flat surface.

A few measurement routines like these, can be composed toaccomplish more complex tasks
such as finding a place to sit in a room where a place to sit is defined in terms of

(a) sufficiently large fiat horizontal surface at proper height, with

(b) a vertical surface with sufficient area at one edge and above the horizontal surface,

(c) sufficient head clearance above, and

(d) foot clearance to the other side of the vertical surface.

There are likely flaws in this description, but one can imagine compiling a more sophisticated
series of tests that make effective use of our measurement tools. A derivative of this endeavor
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will berefinementsof themeasurementroutinesandthebasicbehaviorsof thetools.

By studyingdemanddriventaskslike these,wehopeto learnhow to makebettermeasurements,
andto learnhow to integratetheuseof a smallsetof basicmeasurementtoolsfor accomplishing
higher level tasks without compromising the theoretical integrity of the underlying
computationaltheoriesfor earlyvision.

C Task-Directed Visual Recognition

C.I Introduction

The basic approach to visual recognition followed in this study involved representing images in
the form of relational graphs, and matching these graphs to objects similarly represented. The

relational graphs were automatically constructed over perceptually distinct image units, referred
to as blobs. Given the relational graph representation, our strategy for object recognition was a

voting-based search for partial matches of limited complexity.

The contributions made in this study include: a method of effectively extracting blobs of

perceptually uniform and distinct color; a robust representation of the geometric and color
arrangement of imaged object parts; an efficient method of identifying objects via relational
match voting. An evaluation of the experimental performance of the algorithm applied to the
recognition of real objects in real images is presented in Section 3.1.C.4; examples can be
examined in Figures 6 and 7 of Section 3. I.D.

To participate in task-directed behaviors, a visual recognition module must respond to control
that is a function of task and generate control information that can influence other aspects of the

behavior. The recognition design developed in this study can participate in such behaviors; this

is discussed in section 3.1.C.6.

C.2 Biob Extraclion

The objective of the blob extraction process is to autonaatically represent, in compact form, the

geometric arrangement and distribution of color among parts of an object's projection. Via a
matching process, this information can be used to identify and locate objects represented in a

similar fashion.

The basic strategy applied in the extraction process was to isolate regions in the inaage that are

homogeneous and distinct in some property, and then estimate the rough position, extent,
orientation and avera,,e color of each re,zion.

a Finding Homogeneous Regions

There are two basic factors involved in determining a perceptually distinct and homogeneous

region in the image: the geometry of the region, and the statistics of the visual measurements
within and without the region.

Geometrically, a region is most visually apparent when simple, compact and reasonably
continuous in representation over some area in the image. In this study, for reasons of speed in

implementation, the geometry of a region was considered suitable if it was continuous; more
specifically, a region was some single, connected component of the image. The general
approach to region formation studied here was that of growing and merging region fragments; by
constraining regions to connected components, the process of selecting fragments for com-
bination was greatly simplified. The approximation of a perceptually distinct region as a
connected component produced useful representations of the image data for the recognition

w
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systemdiscussedbelow.

Statistics of the visual measurementswithin and without the region are also important for
determiningthevisualsignificanceof aregion. For this study,a regionwasconsideredvisually
significant if the differencebetweenthe averagemeasurementin the region and the average
measurementof each surroundingregion was greater than someexperimentallydeterminedthreshold.

Different regionformation algorithmsweredevelopedandcomparedfor quality and speed:(1)
iterativemerging,(2) one-passregiongrowing,and(3) two-passgrowandmerge.

(1) Iterativemerging.The processwasinitializedby defining aregionfor everysampledpicture
element,wherethe samplesweremeasuredat regularintervals in the image.The processthen
iteratively merged regions that were touching and mutually most similar in average
measurement,until no touching regions had averagemeasurementdifferences within the
predeterminedthreshold.

(2) One-passregion growing. The image was assumedto be a 2D array of regular image
samples.Theprocessscannedtheimageonce,andfor everysampleit performedthefollowing
operations. If the samplewassimilar enoughto a neighboringregion, it was merged;if the
sampleturned out to be a link connecting two regions that were similar enough, they were
merged together; and if the sample was not similar to neighboring regions, a new region was
formed initially containing only the sample. Region similarity was defined as in the first
algorithm.

(3) Two-pass region grow and merge. This algorithm was a hybrid of the first two. The first pass
of this process was the same as the one-pass algorithm. This was followed by one more pass
where the regions of the previous pass were checked for neighbors that were similar enough, if
so, they were merged.

Each of these algorithms were tested on several images, and the processing time and quality of
the results were noted. The (1) iterative merging algorithm tended to produce the best regions
(least fragmented), and the (2) one-pass algorithrn produced the worst (most fragmented). This

makes sense, since the first method does not converge until all possible merges of neighboring
regions have been tested. However, the (3) two-pass region grow and merge algorithm tended to
produce comparable results to the best one. This indicates that, for a high percentage of cases,
most of a region's extent can be extracted in two merging passes.

In speed, the order was reversed. Algorithm (1) was generally five times slower than algorithm
(2), while algorithm (3) was in between, but not much slower than (2). Because the quality of the
(3) two-pass algorithm was close to the best, and its speed was close to the fastest, it was used in

the final visual recognition experiments. Results of blob extraction using the two-pass region
grow and merge can be examined in Figures 6 and 7 of Section 3. I.D.

b Color Represenlalion

In this study, the blobs were extracted with respect to image color measurements: a region was
considered homogeneous if its parts were similar enough in color and distinct if the neighboring
regions were different enough in color.

In order to extract regions that correspond to visually distinct parts of scene objects, it is useful to

base similarity on a color measurement that is principally a function of the object surface
reflectance. Assuming that neighboring parts of the scene are receiving similar illumination
color, such a similarity measurement can be achieved if color variation due to surface orientation
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with respectto the light sourcecanbe factoredout. Healey[34] hasshownthat, for near-white
light sources,normalized red and green are principally functions of surface reflectance.
Normalizedredandgreenaredefinedasr/(r + g + b) and g/(r + g + b), respectively, for r (red),
g (green) and b (blue) standard sensor output. This is essentially true because, with white light,
variation in surface orientation produces a variation in detected brightness, which is factored out
by normalization.

Region extraction was attempted using similarity of normalized color. It was found that the
regions fragmented and merged in places where the colors were subjectively similar and
different, respectively. The performance on scenes with objects such as those in Figures 6 and 7
of Section 3.1-D seemed unsuitable for recognition. There are two problems with normalized
color: spectral non-uniformity, and insensitivity to relatively unsaturated colors that are still easy
to distinguish by their hues. Normalized color is essentially a projection of the usual three-
component color onto a plane. This plane is parametrized by the normalized red and green
components in a non-uniform fashion: distances between points near red or green are represented
as larger than those between points near blue. This generates a non-uniform representation of
distance with respect to hue, the perceived position of the color in the color spectrum. During
region formation, red or green objects will tend to have more fragmented regions than blue
objects.

The saturation of colors (how pure they are) also adversely affects the computed color differen-
ces in normalized color space. Colors that are relatively low in saturation, but are still distinct
from each other due to large diflerences in hue, are represented as very close, much closer than
two bright reds that look indistinguishable.

Because of the above problems with normalized color and the fact that hue was subjectively and
experimentally the most important factor, sinailarity in hue was used to detemfine if regions were
to be merged or not. Hue was computed using the formula presented in [35]. Hue is unstable for
pixels with very low saturation and brightness. For this reason color samples low in these values
were ignored during region extraction.

c Blob Geometry

Once blobs are extracted from the image in the fonn of regions of samples, their basic geometric
properties are measured. In this study, the principal model of recognition was of matching
representations of geometric arrangements of parts. To achieve a basic representation of the
geometric arrangement of blobs, it is useful to estimate their rough positions, orientations and
extents. More specifically, the geometric attributes estimated for a blob were the position of the
center of mass, the orientation of the principal axis, the length and the width.

The principal axis of the region point set can be successfully defined as the normal direction to
the eigenvector of the region scatter matrix that is associated with its smallest eigenvalue. This
method is discussed elsewhere 136,371.

The length and width can also be derived from the eigenvalues of the scatter matrix. The length
is proportional to the square root of the largest eigenvalue, divided by the number of samples
(minus one), and the width is similarly related to the smallest eigenvalue. In this study, it was
determined that the proportionality constant used depends on the nature of the sample distri-
bution within the region. For a region with a roughly uniform sampling across its extent, the
constant was estimated to be 4. This value was used in the experiments shown in Figures 6 and 7
of Section 3.1.D. In these figures, the blobs are depicted as ellipses.

Using this appraoch, the position, orientation and extent of blobs can be rapidly calculated.
Given a set of image sample positions (x,y), the computation chiefly involves summing up the x,
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y, xa, yeand xy terms, and finding the eigenvalues of a 2x2 matrix. The summation can be

performed during the region merging process, and the matrix computation is handled in the 2x2
case simply by applying the quadratic fom_ula.

C.3 Recognizing Objects Via Blob Representation

The general algorithm developed to recognize objects in visual data is presented in the next two

subsections. The specializations required to apply this general algorithm to recognition from
blob descriptions is covered in the subsections that follow them. The section closes with an

evaluation of an implementation demonstrated on several real images.

a General Recognition Strategy

Our basic recognition strategy has three aspects: (1) the use of relational graph representations of

images and objects; (2) recognition by partial graph matching; and (3) the use of a voting process
to determine the best partial match.

(l) A relational graph of an image is composed of e]ements and arcs. The elements represent
detectable units of image information, and the arcs between the elements represent geometric and

other visually detectable relationships of the associated units. For this study, the units of image
information are the blobs discussed above, and the relations are functions of their color and

.geometry. Relational graphs can be used to represent information salient for object recognition
m images undergoing a high degree of variation due to changes in viewing conditions and object
articulation [38, 39]. In this study, the images and the object models were both represented as
relational graphs, and recognition was achieved by finding matches between these graphs.

(2) A complete match between the model and image is generally impossible in real images, and
the search for the most complete match is a complex problem that is not realistic for fast

recognition. Fortunately, it is also generally not necessary for confident recognition; usually
only a fraction of the relations representing the image have to agree with those representing the
modeled object to unambiguously identify the object's projection in the image. Our strategy was
to recognize the object in the image by searching for partial matches of limited complexity.

Specifically, our strategy was to search for the best match of a single model element to a single
image element. The best element-element match was defined to be the one with the most

agreement between the modeled relations involving the model element and the image relations
involving the image element, as represented in their respective graphs. This method effectively
searches for the most complete matching subgraph that has a star topology: the single element
considered the best match is the hub, and the supporting, matched relations with other elements

are radiating arcs from this hub. In this study, the images and objects was modeled with

completely connected relational graphs. Therefore, there was generally substantial support for
each correct single element match in the form of a partial, star-graph match involving all of the

detected elements of the model. In addition, we argue that this support can be efficiently
computed.

(3) Our method of computing the support for a single element match was to accumulate votes for

each single element match from each supporting (i.e., matching) relation, and then return the

element-element match with the highest vote. Like other voting methods, such as geometric
hashing [40] and generalized Hough transforms [41, 42], the complexity of the process was

polynomial with respect to the number of image elements. In our case, the relational graphs
were composed of unary and binary relations. The recognition process visits every pair of image
elements, and the complexity was O( n2 ) for n image elements. However, unlike most other

recognition algorithms based on voting, the object to be recognized did not have to be rigid, or
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composed of elements that must be localized in the image with a high degree of reliability.

b Outline of Algorithm

The recognition algorithm proposed and experimented with had the following general structure:

1. Prior to recognition, model each object by building a relational graph representing its

visual appearance.

2. During recognition, construct a relational graph representation of the image.

3. Next, for each modeled object, accumulate votes for the best (model element, inaage

element) match:

a. Initialize an array of vote accumulators, one cell for each potential (model element,

image element) match.

b. For each pair of model elements (mr rn:) and pair of image elements (i 1, i2):

i. Assess the match between the relations of(m 1, m:) and the relations of

(i r i2). Assign a value from 0 (bad) to 1 (good).

ii. If the assigned value is the highest for the triple (m j, m e, i j), then add the

value as a vole to the :_ccumulator cell at (rn r i_).

iii. If the assigned value is the highest for the triple (m/, m e, tel then add the

value as a vote to the accumulator cell at (me, i:).

c. Return the (model element, image element) pair with the most votes.

The general matching algorithm was applied to the task of recognizing the projections of objects
in real images represented as collections of blobs, as defined in Section 3.1.C.2. The details of

applying the algorithm involved specifying the nature of the relational graph representation and
assessing of goodness of match between model relations and image relations. These details are
discussed in the next two sections, respectively, followed by a review of the results of this

application.

c The Relational Graph Representation

In the first step of recognition, blobs were extracted from the image and a relational graph was
automatically constructed over them. Prior to recognition, this process was also followed to

automatically construct a model of the object from one of its views.

The relational graph of an image was composed of unary and binary relations, involving one and
two blobs, respectively. A relation had two attributes: a type of measurement (e.g., hue, distance

or angle) and a value for that measurement. For every image processed, the relational graphs
constructed were complete in the sense that all blobs were assigned a unary relation of every type

and all pairs of blobs were assigned binary relations of every type.

The overall objective in designing the relational measurements is the same as for any feature

selection problem encountered when developing a recognition system: the feature should tend to
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havea narrowdistribution with respectto anyoneobjectandtendto differ in valuefrom object
to object. For relationalmeasurementsover theprojectionsof threedimensionalobjects,this is
achievedto a greatextentby designingmeasurementsthat are relatively stablewith viewing
condition changeand diversein type. For this investigation,a color measurementinvariant to
surfaceorientationchangeanda relativelycompletesetof geometricmeasurementsinvariant to
rotation,scalingandtranslationof the image(RST)wereused.

A blob hascolor, position, length,width andorientation(whenlengthandwidth arenot equal).
The aspectratio (width over length) and hue of a blob were usedas the unary relations.The
aspectratio is the only distinctgeometricmeasurementof a singleblob invariant to RST n'ans-
formation in the image.

The blobs extracted were fairly saturated in color (Section 3.1.C.2). Assuming that the light
source is roughly balanced in red, green and blue, this means that the hue of the extracted blob is
relatively unaffected by changes in the object's surface orientation relative to the light source,
and to the amount of the light source the object is receiving. Ideally, the saturation component of
the color is also unaffected: however, due to the strong specular component of the object surfaces
studied and the diffuse lighting of the scene, the perceived surface color saturation varied
considerably.

The binary relations between two blobs expressed their relative orientation, size, and position
(scaled to the size of the blobs). These nleasurements are also invariant to RST transformations

[39]. The formulation of the actual naeasurements also took into account the instability of the
blobs extracted. Sometimes one b]ob of the pair may have had reasonable extent estimates,
sometimes the other, or sometimes just the lengths were reasonable and not the widths. To
achieve some stability in the relative measurements, they were measured component-wise and
redundantly, where possible. Relative size was represented as two components: relative width
and length. The relative position of one blob with respect to another was represented in polar
form and redundantly scaled by each blob, producing four different relative position measure-
ments. More specifically, this approach resulted in the following seven binary, relational mea-
surements:

1. Relative orientation, measured as the angle between the blob principal axes (when
defined).

2. Relative width, measured as the ratio of one width over the other.

3. Relative length, measured as the ratio of one length over the other.

4. Relative distance of the first blob to the second: the distance of the centroid of the first

blob from the second blob's centroid, divided by the area of the second blob.

5. Relative distance of the second to the first: as above, with the blobs switched.

, Relative angular position of the first blob to the second: the angular position of the first
blob's centroid with respect to the axis of the second blob (when defined), about the
second blob's centroid.

7. Relative angular position of the second blob to the first: as above, with the blobs
switched.

Combined with the two unary measuren_ents, nine different types of relational measurements
were used, building a rich description of the geometric arrangement and color distribution of an
image in terms of blobs.
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d Computing Votes From Relational Information

During the matching process, a value is assigned to a match between model relations and image
relations. This value is mapped between 0 (bad) and 1 (good), and is used as a weight for the

vote of the match.

For each relational measurement, the value is a function of the difference between the model and

image measurement. The mapping to the (0, 1) range should reflect the differences possible due
to blob detection error, when the match is actually correct: if the average difference for the
correct match is large, then large difference should be assigned similar values as small

difference.

For the experiments discussed in the next section, the average differences in measurement werethe following mapping was used from

roughly estimated from 18 correct matches, and difference d is less than the average when
measurement difference to value: if the measurement
the match is correct a, then assign a value of 1; if d < 2a assign a value of 2 - (d/a) ; and if d >

2a assign a value of 0.

C.4 Evaluation of Method

approach to recognition discussed here has been implemented and tested on multiple objects
The images. The objects tested were commercial packages with multi-colored, complex designs.and
These designs were also covered with large print that often fragmented the extracted blobs.

Figures 6 and 7 in Section 3.1.D show examples of the packages and matching results. At least
four different packages were successfully modeled and recognized.

For at least two of the modeled objects, recognition was repeatedly tested against images from

several novel views. In most of these test images, the colors represented in the models were not

unique to the modeled objects, forcing the system to use both the color and geometric arrange-
ment information stored in the relational graphs. In most cases, the two objects were correctly
identified when visible in the scene. This included images in which the projection of the model-

ed objects were substantially occluded.

Since the demonstrated implementation of the recognition process always returned the best
match, regardless of confidence level, spurious recognition occurred when the object was not
visible in the scene. Though a confidence threshold was not estimated and applied at this time,
these spurious recognitions were generally based on little support from the image data and were

low in computed confidence. Thus a practical confidence threshold is feasible.

C.5 Color lnvariants for Recognition

In the course of our investigations, some potentially useful color invariants were discovered that
one could refer to as normalized color ratios. These values have not yet been studied experi-

mentally, though they could lead to promising results.

Given the color imaging equations of Healey [34], the following functions of the three basic
color components (red, green and blue) could be invariant to various changes in the viewing
conditions. Suppose one has two color samples from two different points on an object's

projection (r 1, g j, bl) and (r 2, g2' bz)' compute the following ratios:

(r/r2)/n (g /g_)tn (b /b2)/n

where n is the magnitude of (r]r 2, g,j/g:, bt/b2)
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Additional invariants can be derived from the above three that may be more numerically stable:

(rig2)/(r2g I ) (gjbe)/(g2b l) (blr2)/(b2r j)

Assuming that the two surface points are being illuminated by the same light sources, and that
the sensor's spectral response can be approximated as three delta functions at some red, green
and blue wavelengths, Healey's formulation predicts that these functions are invariant.
Specifically, the surface orientations of the two sample points can be different, their orientation

relative to the camera and light source can vary, and the illumination color can change.

The first assumption is reasonable tinder in most viewing conditions; however, it is uncertain
how the sensor approximation of the second assumption affects the usefulness of the result. This
could be analyzed and experimented with in future studies. Also, one does have control of the

sensor response by use of filters. With appropriate selection of filters, the sensor response could
be made sufficiently narrow-band.

C.6 Task-Directed Visual Recognilion Summary and Conclusions

The basic approach to visual recognition followed in this study involved representing images ira
the form of relational graphs, and matching these graphs to objects similarly represented. Given
the relational graph representation, our strategy for object recognition was a voting-based search
for partial matches of limited complexity. The contributions made in this study include: a
method of effectively extracting perceptually uniform and distinct regions of color (blobs); a
robust representation of the geometric and color arrangement of imaged object parts; an efficient
method of identifying objects via relational match voting. A visual process incorporating these
contributions was implemented and applied to the recognition of real objects in real images.

To participate in task-directed behaviors, a visual recognition module must respond to control
that is a function of task, and generate control information that can influence other aspects of the
behavior. For recognition, the nature of the task can influence the location in the scene to be

analyzed, the anticipated scale of the object's projection, the set of modeled objects to be
searched for, and the specific image features to be emphasized. Given the design discussed
above, our recognition process can be easily, controlled in these ways by inputting images from

specific camera orientations, by subsampling the image in meaningful ways, by pre-selecting the
models of the objects of interest for matching and by weighting or ignoring the votes of certain
selected features to reflect task-dependent biases.

In addition, valuable control information can be obtained from the recognition process in the
form of the object identified, the location in the image or scene that the object may exist in, and
the confidence in the match. In these ways, the recognition algorithm can be seen as a useful
component of a task-directed vision system.

D A Layered Active Vision Archilecture

We are developing a processing architecture and testbed scenario to implement and test our

theories and ideas about interactive vision systems, particularly in the context of interacting with
people. In this section we discuss the application domain, present the system architecture, and
describe early experinaents with the system.

D.I Looking at People

Throughout the history of computer vision research, certain application domains have served to
focus research directions and stimulate advances in the field. These domains have included the

w
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"blocks world," factory andinspectiontasks,and mobile robot vision. Althougheachof these
areashasbroughtimportantissuesinto focus,eachhashadlimitations. For example,theblocks
world allowedresearchersto move from low-level imageoperationsto high-level recognition
andconstraintpropagation.O,1theotherhand,theblocksworld assumesobjectsto havesimple
geometries,e.g., polyhedral. Inspectionand assemblytasksrequirespeedand robustnessof
processing,but often assumecarefully structuredenvironmentsand highly detectablefeatures
suchasfiducial marks. Mobile robotsrequiretime-criticalupdatesof spatialinformation,but are
oftenlimited to navigationtasksin relativelystaticenvironnlents.

In recent years,anotherapplicationdomainhasbegunto attractattentionin the field: visual
interactionwith people,or "looking at people 1,4.,44,45,46]. Thesurgeof interestin this area
hasbeenduein part to widespreadadoptionof interactivecomputerinterfaces,coupledwith an
optimismthat machinesare,or soonwill be,fastenoughto perform the necessarycomputations
rapidly. Becauseof thevarietyof visual tasksinvolved in interactingwith dynamic,non-rigid,
articulatedbeings,this is achallengingapplicationdomainfor thecomputervision community.

Interaction betweenhumansis greatly enhancedby the interpretationof non-verbalactivities
suchasbody movementsandfacial expressions.To achievenaturalandconvenientcommuni-
cation betweenhumansand machines,computersmust alsobe endowedwith the capability to
look at peopleandinterpretvisualcuesfor communication.This requiresboth interpretingthe
dynamicvisual sceneand understandingthe conventionsof "body language",i.e. the semantics
of gestures,poses,andfacial expressions.

Most of theresearchin computervision devotedto interactingwith peoplehasconcentratedon
particular taskssuchasfacerecognition,expressionanalysis,or body tracking. Although work
in theseareasdatesback to the late 1960's147,48], therehasbeenlittle effort to constructa
theoryof looking at peopleor ageneralframeworkfor thevariousrelatedtasksor behaviors.

In thisresearch,weareexploringa frameworkfor looking at people. The processingarchitec-
turewewill describeis aninitial attemptatconstructingthebuilding blocksnecessaryto achieve
vision-basedhuman-computerinteraction. Becausethe tasks are inherently interactive, we

'" ' ' with thepursueanactivevision or mteractLve-t_me"vision approachto theproblemof looking atpeople.
li" " " ''The term mteracnve-tiine is intended to s,,<,,,e,;_ routines which are closely coupled

reaction time of the process or agent calling the routine [491. The reaction time constraints may

range from on the order of nlilliseconds (e.g., feedback for controlling a robot's nlotion towards
the human) to seconds (e.g., searching a room for people).

D.2 Organization of the Active Vision System

Enormous run-time resources seem to be required for such perceptual tasks. Early visual

processing as conventionally conceived is computationally intensive, and because of noise and
complexity at the signal level, it appears necessary to sift through massive amounts of data to
recover stable, meaningful infomlation. In biological systems, this is done in real time, using

highly parallel, noise-tolerant techniques. Computer systems that attempt to do similar pro-

cessing have tended to be slow and expensive.

The fact that massively parallel biological computations seem to do early processing of images in

a more or less unifoml way does not imply that engineered systems must do the same in order to

support a given level of information ext,action. We conjecture that much sparser early pro-
cessing can be sufficient if intelligently applied, and that this process can be controlled with
mechanisms similar to those emerging from recent research in intelligent reactive control.

In addition to the problem of computational resources, there is a large conceptual gap from signal

to interpretation -frorn low-level to high-level data. Individual pixels contain very little
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information, and the information they do contain is only understandablein the most basic• • : f natural objects, on the other hand, are hard to model

Wmaeuds'eaa. t._ • -physical terms. High-level desct_tel_o_e _re hard to relate directly to low level data, n t t
in purely physical terms,,anu_. ___ ,_,= .,_n rom signal to quahtauve oescnpuon.
hierarchical design to netp UrlUgg t,,_ _,,v.f -,
levels of description, such as blobs or regions, are taken to represent persistent visual entities.
These data objects are updated from frame to frame in a way that reflects the incorporation of

new measurements, as well as changes that reflect world dynamics.

a Overall Organization

The processing architecture is divided into three layers, loosely described as the "measurement"

layer, the "blob" layer, and the "object" layer, as shown in Figure 3. Although there are
similarities with the traditional layered computation vision approach (e.g., the layers are modular
and somewhat independent), the architecture is more directly inspired by an active vision

approach.

OBJECT LAYERI
b,obsl1

I BLOB LAYER

measurements l

I MEASUREMENT LAYER

model-driuen
information

I measurement
requests

Figure 3.3: The processing architecture

The architecture exemplifies the follov, ing principles:

• The processing layers are modular and hierarchical. This helps bridge the gap from low

to high level descriptions.
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• Thesensingis basedonmultiplemodalities.Thisdecreasesthedependencyonaparti-
cularmodalityor sensortypeandincreasestherobustnessof thesystem.

• Thecurrentstateof eachlayeris availableatregular,shortintervals. This isconsistent
with the interactive-timerequirement.

Uncertaintyestimatesareassociatedwith the informationateachlayer. At anytime a
moduleshouldhavebothadescriptionof its stateandconfidencesassociatedwith the
datastructures(e.g.,objectsor blobs)which it is tracking. Directingattentiontowardor
awayfrom certaineventsor dataservesto increaseor decreasetheconfidences.

• Thearchitecturesupportsbothmodel-anddata-drivenprocessing.Thereis noapriori
commitmentto bottom-upoz"top-downstrategies.

Eachlayer is constantlyupdatedandmaybequeriedat regularintervals. Although therearepro-
cesseswithin each layer operating at various time scales,a fundamentalproperty of the
architectureis that at each"time click" the basicelements- measurementvalues,blobs, and
objects- havemeaningfulvalueswith associatederrorestimates.For example,if a movingblob
is updatedat time tl andthe objectlayerinquiresaboutit at time t2, theblob layer mayhaveto
estimateits positionbasedon its prior positionandvelocity, includingacertaintymeasurewhich
is a function of the measurement modality and blob-finding algorithm used, as well as the prior
information.

b Measurement Layer

The measurement layer responds to requests for measurements, which may be in the form of
pixel values, depth measurements, velocity vectors, color or texture measures, edges, or some
other low-level n-_easurement which can be quickly computed. The measurements may be from a
single location - a "point" measurement - or the difference between two locations - a "compari-
son" measurement. The measurement syntax is shown in Table 1.

The AVP measurement layer is accessible by a uniform interface which hides the low-level
sensor dependencies (e.g., control of PRISM and color digitizer). There are also built-in display
and debugging tools for visualizing the output of the various modalities. Each measurement type
has an expected time of retrieval, so that a process requesting a set of measurements can compute
an estimate of the time it will take to fulfill its request. Also available are low-level behaviors
such as tracking points in the scene and changing sensor parameters such as the sensor location
and direction.

The suite of measurement types available at any given time is dependent on the available
imaging hardware. However, the interface to the measurenaent layer assumes nothing about the
hardware configuration, so in principal it will perform with any given supporting hardware - as
long as the layer requesting the measurements can pursue its goals using varying measurement
modalities. This implies an open architecture model, in that adding (or deleting) measurement
types adds to (or subtracts from) its functionality. This concept encourages algorithms which
rely on relative measurements that may be meaningful across several modalities. For example, a
middle-level query "okay-to-merge?(blob A, blob B)" may be answered using range, color, and
velocity information, or perhaps only color if range and velocity are not available.

Our implementation currently uses the PRISM-3 system and a color camera and digitizer as
hardware resources to the measurement layer. The PRISM-3 system comprises a pair of stereo
gray-scale cameras mounted on a pan/tilt mechanism, along with hardware and embedded
software to support imaging operations and mechanical control. For example, the hardware

performs very fast sign correlation to support multiple stereo depth measurements or motion vec-

- 36



(make-measurement type class location & key point

where

type = { gray color texture depth motion }
class = { point comparison }
location = { XY-list List-of-XY-lists }
scale={ 1 357... }

gray - Gray scale values averaged over a local gaussian patch
color - Color (R G B) values averaged over a local gaussian patch

depth - Range measurements via PRISM
motion - Image flow measurements via PRISM

Classes

point - Single (locally ave,agect)measurenlent
comparison - Difference of two point measurements

Location

XY-list - (x y) in image coordinates for point measurements
gist-of-XY-lists - ((xl y l) (x2 y2)) for comparison measurements

Scale

scale - NxN support for local g:mssian averaging

Table 1. Measurement layer syntax.

scale)

tors per flame time. The color camera is mounted on the PRISM head and returns color or gray-
scale images with a wider field of view. We are also beginning work on a workstation-only
version which seeks to approximate the PR1SM-3 measurements entirely in software.

c Blob Layer

The blob layer is responsible for segmenting and updating meaningflH regions in the scene.
Blobs are defined to be convex regions relatively uniform in some measurement type (or

conjunction of types) - e.g., a blob may be a region of continuous depth or similar color. The
blob layer is responsible for sending measurement requests to the measurement layer, and may'
query the object layer for hints on where to look for new blobs. The layer's processing is
influenced both by the measurement layer (data-driven) and the object layer (model driven).
There is in fact no a priori commitment to "bottom-up" or "top-down" processing, as the
architecture can implement either or a combination of both. The layer provides processes for
bootstrapping (finding blobs from no previous data) and tracking (updating known blobs), as
well as mixed modes which combine updating known blobs and looking for new ones. The blob

layer can be directed to look in certain areas and at a specified scale.

Algorithms used by the blob layer to detect and update blobs must return useful information in a
short cycle time. They are required to make efficient use of limited resources (i.e., processing
time) largely by using sparse measurements and/or measurements in limited regions of the visual
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field. We are working on salient Nob-finding techniques based on color, range, motion, texture,

and combinations of these modalities.

We currently model blobs as ellipses. A number of other parametrized models may be useful,
such as snakes or 2D superquadrics, although computational expense must be limited. These

rather generic shape descriptions allow for either general or specific commitments to the data. A
human, for example, can be modeled as one large blob or several neighboring and partially

overlapping blobs. Keeping track of the relationships between articulated parts and the blobs

which comprise them, at different scales, is the job of the object layer.

d Recognition Layer

The object layer seeks to fulfill requests from a user or planning agent. The queries may be as
specific as "Where is the left arm?" or "How many people are there?", or as general as "What is
of interest in the scene?" It instantiates stored object models and builds new models. It interacts
with the blob layer by sending infomlation about expected blobs, and by regularly querying the

current state of scene blobs. In a completely bottom-up mode, the object layer interprets current

and past blobs as best it can, given a database of known objects. In top-down mode, the layer
tells the blob layer which blobs to track and where to look for new blobs.

Objects are modeled as collections of constrained volumetric parts, where the 2D projection of
the parts can be approximated by the blob shape descriptions. The object model constrains the
relative positions and orientations of its parts. An articulated object such as an arm is composed
of three jointed parts - the upper arm, the forearm, and the hand - which are mutually
constrained. The hand is further subrnodeled as several articulated parts. This simple model

supports a hierarchical, coarse-to-fine search process, which n-my be terminated at the level
appropriate to a given task. For example, "find the person" requires much less detail than "find

where the hand is pointing."

Figure 4 shows an example of the interaction among the layers while looking for a person at
rather coarse scale. The current state is shown on the left: the measurement layer returned a

range and color description of the scene; the Nob layer found some blobs related to a person and
some other extraneous blobs; and the object model being sought approximates the human

component parts and their (2D) geometric constraints. The right side of the figure depicts
subsequent processing which seeks to update the description: the blobs are matched as well as

possible with the object model, and missing model parts are noted; the object layer tells the blob
layer to track some of the blobs, and to search for new blobs in the area of the missing arm; the
blob layer turns that request into a measurement request - in this case a request for an array of

range measurements in the region of interest.

-- 38



SceRe

i

i

FI D

(a) (b)

Figure 3.4: Layer interaction.
A flow of information is shov, n from the measurement layer tip to the object layer (left

side), and then back down to lhc mctsuremcnl laver (right side). (Note that the layers do
not wait for the completion of such a cycle, but :ue constantly active servicing their most

recent requests.)

D.3 Experimenls

We are developing a testbed scenario in order to facilitate development of the system and to gain

experience in a realistic environment. The scenario is a package-handling situation, where a
"customer" interacts with a robot behind the counler. In our laboratory, a gantry robot is set up

to move in an approximately 4' by 8' workspace. (See Figure 5.) It has a 5 DOF arm and the
PRISM-3 active camera head installed on top. On one end of the workspace is a collection of

boxes and objects (the storeroom). On the other end there is a counter. People can walk up to
the counter and request services from the robot. Humarl actions include:

• Requesting the robot's attention

• Handing a package to the robot

• Taking a package from the robot

• Communicating via sirnple gestures (e.g., nodding or shaking one's head)
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( )

'8Figure -_.,. Te.,,tbed scenario.

- I ' these events, the robot must support a significant level of interaction. It
To successful y react to
must be able to:

1. Notice and locate the presence of a person
2. Initiate a dialog to discern the "'customer's" desire
3. Understand simple gestules, e.g., to discern "'\.es/no'"

4. Recognize the "package offering" posture
5. Recognize the "package receiving" posture
6. Distinguish one customer fron_ another

, . - -./ line the _zeneral layered architecture by essentially'
Currently some of the beha,,_or,', stte,un ,---_.."....... -role there is a 'find the head" behavior

operating closed-loop on the measurenaem oala. rut _,, ..... v ._
which, if expecting a person in the custo_rmr area, used a simple depth search routine to locate,
and subsequently track, the customer's head. The behavior is reliable when one person is in the
customer area. A related direct behavior is discerning a "yes/no" answer by looking for a head
nod or shake. Once the head is located, its center can be track_,dsat frame rate by the PRISM

system, and the path is easily classified as lar_,ely vertical - a - or largely horizontal - a
esearch objective is to develop ab-orithms that close the loop at higher and higher

levels architecture while mamt,unmg mteracuve tmm response

One experiment we are conducting along these lines is aimed at constructing object descriptions
manner which is compatible with the layered architecture. We employ the voting-based

in a .. "hm. described in Section 3.1.C.3, which manipulates graph representations
recognmon a.lgont .. ,. . - renresentations are used to model and recognize
describing relauonshlps among blobs. These ,- .

packages in the robot's workspace.

The recognition process involves two main parts: learning models and recognizing instances of
the models. To learn the model, we isolate the package in the camera's field of view, as m
Figure 6(a). The extracted blobs shown in Figure 6(bY are used to construct the object model.

Learning objects is done off-line.

The recognition process seeks to instantiate the stored model in the cluttered scene shown in

Figure 6(c). Figure 6(d) depicts the blobs computed from the scene, and the recognized package
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which is markedand identified as object #0. (The blob shownis the blob with the highest
supportfrom thevoting schemedescribedin Section3.1.C.3.)

Figure 7 shows a similar experiment, learning a second object model and subsequently finding
both known packages in the scene.

The blobs used in this process are constructed using a segmentation algorithm based on hue.
Hue has proved to be a salient cue in this domain. For ex_mple, hair and flesh colors can be used
to detect some person-related blobs, _md colored clothing can be useful both in detection and in

re-identification - for example, after the robot returns from acquiring a package it should quickly
re-identify the person at the counter. Despite the utility of hue as a cue in this domain, we regard
the current algorithm, based on a single modality, as merely a first step toward developing robust
multi-modal segmentation.
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Figure6: Packagerecognitionexample#1.

(a) Objectto belearned.
(b) Blobscomprisingtheobjectmodel.
(c) Clutteredpackagescene.
(d) Blobsfoundin thescene;recognizedobjectis markedandidentified byobjectnumber.
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Figure 7: Package recognition exzmlple #2,

(a) Second object to be learned.
(b) Blobs comprising the object model.
(c) Cluttered package scene.

(d) Blobs found in the scene: recognized objects are markcd and identified by object
number.



3.2 Gaining Information Through Learning

Delayed reinforcement learning is an attractive framework for the unsupervised learning of
action policies for autonomous agents. Some existing delayed reinforcement learning techniques
have shown promise in simple domains. However, a number of hurdles must be passed before

they are applicable to realistic problems. This paper describes one such difficulty, the input gen-
eralization problem (whereby the system must generalize to produce similar actions in similar
situations) and an implemented solution, the G algorithm. This algorithm is based on recursive
splitting of the state space based on statistical measures of differences in reinforcements

received. The G algorithm's sound statistical basis makes it easy to predict when it should and
should not work, which is not true of the sole previous approach to the problem.

A Background

Delayed reinforcement learning is a framework for learning, without supervision, to act in an

environment [50]. In this framework, an agent is given on each tick, in addition to "perceptual"
inputs, a numerical reip_rcement, which is a measure of the immediate value of the state
corresponding to the inputs. The goal of the agent is to choose actions to maximize the sunl ofreinforcement over time. 3

Delayed reinforcement learning is an attractive framework due to its similarity to the problem
faced by a person or other creature placed in unfamiliar surroundings and expected to act intel-

ligently. Such problems are of increasing theoretical and practical interest due to recent progress
in the construction of autononlous agents such as mobile robots. Though such systems have

achieved new levels of performance, they generally depend on elaborate hand-coded policies in

computing how to act. When the environment for which they were designed is perturbed, they
may fail gracelessly; they are unable to adapt to new environments; and the process of hand-

coding policies they require is slow and error-prone. Agents whose action policies are developed
autonomously from a simple reinforcement signal might transcend all these problems [51].

The work described in this paper began with the goal of applying existing delayed reinforcement
learning techniques to the problem of learning visual routines; that is, of learning to control an

active vision system in which the sorts of visual computations performed can be controlled top-
down. Our recent use of such visual systems 1521 has depended, again, on explicit hand-coded
action policies. Experiments combining reinforcement learning with visual routines were
proposed in Chapman's thesis 151], and some simple visual routines have been learned

successfully by a delayed reinforcement learning system of Whitehead and Ballard's [53]. We
immediately ran into a series of technical problems, however, which made it clear that the
existing learning techniques are not up to the task. This paper reports progress on some of thesetechnical subproblems.

A.1 Temporal Difference Learning

The best-understood approach to delayed reinforcement learning is temporal difference (TD)
learning, studied in particular by Sutton and his colleagues [54, 55, 50] Two forn_s of TD

learning have been studied in detail, the adaptive heuristic critic of Sutton "[50] and Q-learning,
due to Watkins [56]. Several authors have compared these methods empirically and found Q-
learning superior [57, 58, 59], so we adopted Q-learning as our starting point.

Q-learning is based on estimating the values of Q(i,a), which is the expected future discounted

reinforcement for taking action a in input state i and continuing with the optimal policy. The
discounted reinforcement is the sum of all future reinforcement weighted by how close they are;

3. Or, more accurately, to maximize a future-discounled sum of reinforcement, as we will explain.
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specifically
O<3

Q(i(t),a(t)) = Z yJr(t + j),

j=o

where t is the present time, 0 < Y < 1 is a discount./'actor close to one, and r(t) is the re-

inforcement received at time t. Thus the Q values say how good an action is not only in terms of
immediate reinforcement, but also in temps of whether they get the agent closer to future
reinforcement, and in effect allow the learner to dynamically create subgoals based on
reinforcement that may be far in the future. Given Q values, we can also compute the value of a

state as the value of the best action in that state:

U(i) = max .Q(i,a).

The learning algorithm works by creating a two-dinaensional table of Q values indexed by
actions and inputs and then adjusting the values in the table based on actions taken and
reinforcement received. This process is based on the observation that Q of the current

(input,action) pair can be computed based on the immediate reinforcement received and the

value of the next input

Q(i(t),a(t)) =r(t) +¥U(i(t + I)).

For further details, see 157, 561.

A.2 The Input Generalization P,-ol)lem

The first problem we faced in applying the Q algorithm to learning visual routines was that of
too many inputs. Our target visual system [521 provides more than a hundred bits of input, cor-

responding to more than 2 m° distinct inputs. This is a problem for two reasons: space and time.
One simply cannot allocate an array one of whose dimensions is 2 m°. Even if you could, it
would divide the state space up into tiny pieces, each of which would occur extremely rarely, so

the system could never accumulate enough experience to gauge the value of most states.
Somehow a learning algorithm must guess about the value of states based on experience.with
similar states. But how can you know which states are similar when you have no experience

with them?

The bulk of this paper describes an algorithm, the G algorithm, that addresses this generalization

problem.

This problem has not previously been raised as such in the delayed reinforcement literature.
However, an existing extension to TD does address the problem. Various researchers have
combined TD with connectionist backpropagation, which can generalize given a large number of

input bits [60, 58]. Some have had considerable success with this method, notably Lin [58].
Others have found the results disappointing [50, 57, 61]. Our own experience has been negative:
in the domains we tested it in, the combination of TD and backpropagation learned very slowly
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andconvergedto pooractionchoices. It is hardto setaboutexplainingthediscrepancybecause
backpropagationis ill-characterized. It is impossibleto know how the algorithmwill perform
whenpresentedwith a complexproblem;it oftenconvergesto badlocal minima.

The G algorithm is a moredirect approachto the generalizationproblem. It is mathematically
well-characterizeddueto a soundstatisticalbasis,andit is thereforeeasierto determinewhen
andwhy it shouldor shouldnot work.

A.3 The Domain

The domain used in this research was the videogame Amazon, previously used in Sonja [51].
More accurately, we studied one apparently simple subproblem from this domain, which turned
out to be unexpectedly difficult.

In Amazon, the player controls an "amazon" icon which is attacked by ghosts. On each tick, the
player can move the amazon one pixel in any of the eight "king's move" directions. Since the

amazon is fifty pixels high, this means that the player has very fine-grained, effectively
continuous, control over motion. (The otherwise similar videogame domains used by other
researchers have coarse motion control, ira which the player icon moves its entire width in a
single tick. We'll see that this difference matters.) Ghosts similarly move a single pixel on each
tick. The player can cause the amz_ZOn to shoot a "'shuriken" in the amazon's direction of
motion. Shuriken move in a str,tight line, four pixels per tick: if they collide with a ghost, the
ghost dies.

The subproblem from Amazon we studied generates a ghost at a random distance and orientation
from the amazon, waits for the amazon to kill it, and then repeats.

From earlier experience with Sonja, we knew of an encoding of this problem that is sufficient for
efficient action. It is sufficient to know the direction from the amazon to the ghost and whether
the amazon and the ghost are aligned along one of the axes on which shuriken travel. Then an
efficient strategy, is: if aligned, shoot in the direction of the ghost; otherwise move in a direction
that will align you with the ghost.

We had to add an additional input for the sake of learning. It enables temporal backpropagation
of the reinforcement for killing a ghost. Dozens of ticks can pass between the time the amazon
shoots a shuriken and the time it reaches its target; somehow the system has to connect these two
events. This is extremely difficult without additional inputs. 4 We added an additional bit of
input which says whether or not there is a shuriken in flight that will intersect with the ghost if
the ghost does not get out of the way. This bit effectively bridges the action of shooting on the
right trajectory with killing the ghost.

This encoding of the scene is not what would be produced by a realistic visual system, and we
intend to replace it with a more realistic encoding in future work.

The motor outputs from the learning system are three bits encoding the eight possible directions
of motion and one bit that says whether or not to shoot.

The reinforcement given is 10 when a ghost dies, otherwise -. 1 if a shot is taken, otherwise 0.

This apparently simple domain is difficult for several reasons. First, some states are very rare,
and it is hard to gain enough experience with them to find an optimal policy. Second, the ghosts'

4. It's impossible, in fact with TD methods in which _., the TD recency parameter [51], is zero. We did not
experiment with ;k>0 but we expcct that learning would converge very slowly if at all.
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behavioris soprogrammedthatthey"try" to stayunalignedaslong aspossible.When theama-
zonandthe ghostareunaligned,therearelimited opportunitiesfor thesystemto learnanything
interesting. In particular,thesystemis not(locally) reinforcedfor actionsthat leadto killing the
ghost,becauseit is impossibleto kill theghostwhile unaligned. Undera randomstrategy,the
amazonandghostwill typically stayunalignedfor stretchesof severalhundredticks punctuated
by brief periodsof alignmentterminatedby ghostdeath.Thusmostexperienceisof very limited
value, and the interestingreinforcements(ghostdeaths)occur infrequently. Third, there is a
greatvariancein thevalue of statesthat the learnercannotperceive. How nearly alignedthe
ghostis andhow closeit is to the amazondetenninehow long it will be beforeit is possibleto
kill it. If thesystemgetsaseriesof"easy" ghostsin a row it canreadily cometo wrongconclu-

Y

Figure 3.8: The amazon has shot a shuriken at the ghost.
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sionsabouta statevalue. This just meansthat the learningrate mustbeset sufficiently low to
evensuchdifferencesout; but that in turn meansthatlearning is slow. Finally, there is amore
generalproblemof inadequateperceptualaccess.The problemseemseasyto a humanplayer
who canseewhat is happeningon thescreen,but the sameproblemwhenreducedto a few bits
of input becomesvery difficult. Theselast two difficulties areartifactsof the domainencoding
andwe intendto eliminatethemin futurework.

B The G Algorithm

We can motivate the G algorithm in two ways. The first way is to see it as collapsing the

exponential sized Q table engendered by large numbers of input bits. In most domains, large
chunks of the table should have identical entries, because many of the bits will be irrelevant to

acting under certain circumstances. If we can figure out which bits are irrelevant, we can
summarize a large region of the state space with only one Q vahle, thereby saving both space (to
store the values) and time (since experience with any state in the region can be used to update the

single Q value).

Another way of looking at the algorithm is as a technique for incrementally constructing the sort
of action selection networks that have recently been used by various researchers (including
ourselves) in agents interacting with environments [62, 63, 51, 64, 65, 66]. These networks are
digital circuits that compute what to do based on perceptual inputs. The circuits are kept shallow
(with short paths between inputs and outputs) in order to compute quickly when implemented on
slow, massively parallel hardware. Typically they maintain little or no state. Because the
networks are shallow, the), have the property that although every input bit is used in computing
how to act, in most situations most bits are ignored. For example, whenever Sonja detects that it
has lost track of the amazon, it searches for the amazon; all other inputs are irrelevant in this

case. Thus a single input bit can determine ho_' to act in some cases.

The G algorithm incrementally builds a tree-structured Q table. It begins by supposing that all
input bits are irrelevant, thereby collapsing the entire table into a single block. It collects Q
values within this block. G also collects statistical evidence for the relevance of individual bits.

When it discovers that a bit is relevant, it splits the state space into the two subspaces

corresponding to the relevant bit being on and off. Then it collects statistics (action and
relevance) within each of those blocks. These blocks can in turn be split, giving rise to a tree-

structured Q table. The system acts on the basis of the Q statistics in the leaf node corresponding
to an input. Thus the tree acts as a boolean input classification network, essentially, similar to the
sorts of action networks described above.

This incremental, one-bit-at-a-time construction of the G tree puts a constraint on the sorts of en-
vironments that G can learn in: the relevance of bits must be apparent in isolation. The algorithm

will fail if groups of bits are collectively relevant but individually irrelevant. If we consider the
perceptual system of an agent to be part of the "environment" of its learning system, as we must,
then this constraint can be placed on that system rather than the world. In other words, we

hypothesize that a well-designed perceptual system orthogonalizes inputs such that the)' are
individually relevant.
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Figure 3.9: A G tree.

Internal nodes correspond to input bit splits: tile algorithm collects
statistics about the subspaces represented by' the leaf nodes.

C Statistics

This section describes the statistics used in G to decide '+,hen to split and how to act.

C.1 Bit Relevance Tesls

G uses a standard statistical test, the Smde,zt'._ t ze._t [67[, to determine when a bit is relevant.

The t test tells you, given two sets of daI,L ho,a probable it is that distinct distributions gave rise

to them. That is, ho,a likely is it that these two sets of data arose from the same under.].ving
process? This is just what we need in order to deten-nine whether an input bit is relevant: is the
learner/environment interaction the same 'ahen the bit is on versus off, or is it different?

Two sorts of relevance statistics are kept: a bit may be relevant because it affects the value of a
state or because it affects the v_'ay the s.vslem shouid act in that state. Two sorts of statistics are
used to determine value, corresponding to the mean immediate value of the state and its mean

discounted furore value. Both sorls are required: immediate value is used to "bootstrap" the
process by recognizing the states that themselves give large reinforcements (those in which a
shun'ken is flying toward the ghost, in Amazon) and discounted value is used to find states that
lie on a path toward externally reinforced states (such as those in which the ghost and the
amazon are aligned). For each bit in each state block, G keeps track of the immediate and
discounted values of the state block subdivided by the bit being on and off, and compares thesevalues with the t test.

A bit may also be relevant because it affects how the agent should act; for example the four
direction input bits in Amazon do not affect the values of the state, but they do determine which
direction the player should head in. To discover such relevance, G keeps track, for each action in
each state block, of the discounted value of taking the action in that state block when the bit is on
versus when it is off, and compares these values with the t test.

When a bit is shown to be relevant in a block, that block is split on the bit. When a block is split,
all discounted statistics (both action value and relevance) must be zeroed. The reason is that a

state block whose mean value is low may have a subblock whose value is high. Before the split
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is made,this high-valuedsubblockis effectively invisible, andtheestimatedvaluesof all states

that can transition to that subblock will be too low.

Throwing away all experience accumulated thus far on each split seems too drastic. We are

exploring ways of doing this, and expect that they will substantially increase the learning rate.

C.2 Exploration and the Interval Estimation Algorithm

Any delayed reinforcement learning system faces a fundamental problem: the tradeoff between
acting to gain information and acting to gain reinforcement. At any given time, the system has
an imperfect approximation to the optimal policy for acting in its environment. In order to
improve the policy, it must often take actions that appear suboptimal, because its information
about those actions may be incorrect. Most systems in the literature address this problem by

occasionally choosing random actions, typically with probability decreasing over time and
inversely related to the difference between the apparent value of the action and the apparent

value of the optimal action.

We took a different approach, using Kaelbling's interval estimation (Ig) algorithm [57], which
has a sound statistical basis. This algorithm uses information about the range of reinforcements
received for particular actions to construct a confidence interv:d for the mean reinforcement.
The system then chooses the action whose reinforcement interval has the greatest upper bound.
A high upper bound can be due either to a high mean or to a high uncertainty about the value of
the action. This algorithm has been shown empirically to be superior in practice to available

alternatives [57].

C.3 Enforcing Normality

The IE exploration strategy and the t test are only as good as the statistical model they use.
Unfortunately, IE and the t test depend on assumptions about the statistical distribution of the

s sam led In particular, they depend on the assumption that the approximations to the
item P .' - _,, .... tinn_ n states are distributed normally. Most statistical techniques
discounted furore value u, ......... _ . . "
make such assumptions of nonnality .5 The normality assumption, while approximately accurate
in the simple domains we studied, is violated by Amazon, because the interesting reinforcement
value (for killing a ghost) occurs so rarely. We found, as a result, that the G algorithm as

specified in the last section frequently made incorrect choices both about action and relevance.

Normal statistics are frequently used to examine non-nomaal data, and this is often successful
due to the central limit theorem which staies tt_lt the sum of a set of values from an arbitrary
distribution will approach normality as the number of samples increases. We were able to solve

the problems described in the last section by delaying decisions based on statistical information
until enough samples had been collected for then_ to approach norrnality.

Bad IE action value statistics can cause the system to converge to incorrect Q values. The Q

algorithm provably converges to correct Q values so long as every action is executed infinitely
many times in every state (and various other conditions are satisfied) [56]. However, the IE
strategy is not guaranteed to execute every action infinitely many times if it gets a sufficiently
bad early sample. 6 This problem can be overcome by postponing applying IE to a situation and

acting at random until all actions are tried at least k times 157 I.

5. The alternative is to use nonparametric su_tistics, which arc unwieldy and seemed inappropriate to this domain

(for reasons too complex to go into here).
6. Some other exploration strategies in the literature do probabilistically guarantee infinite execution, but are ad

hoc rather than statistically motivated, and may not execute exploratory actions sufficiently often to eliminate

this problem in practice.
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Similarly, insufficiently manysamplesfor the t test can make bits look relevant that are not. We
thus required a certain number of samples before using the test to split a subspace.

These fixes depend on numerical thresholds whose values may vary according to the domain,
and are thus not satisfying. A better-motivated alternative would be to use statistical tests of

normality (such as skew and kurtosis 168]) to decide whether enough samples have been
collected to trust the data. We have not implemented such tests.

C.4 Low Frequency Noise

The techniques described in the previous section were mostly sufficient in practice to ensure that
the system did not split on irrelevant bits. An additional problem arose in some cases, however:

while bits that changed rapidly presented no problems, irrelevant slowly-changing bits continued
to pass the t test. Figure 10 illustrates the reason. If an input bit changes slowly relative to
changes in estimated state values, the statistics collected to determine the discounted value of a

subspace are skewed. Ira the figure, the estimated value of the state starts low and converges to a
higher value. Initially the bit B69 is low, and later goes high. As a result, it will appear that B69
being on makes this subspace more valuable and the system will split.

The solution to this problem is to separate learning into action value and bit relevance phases.
Estimated Q values are held constant while bit relevance statistics are collected. The system
switches phases when values seem to have settled down, based on information about the
derivatives of the statistical measures.

B69 =0

U(state)

B69 = I

--->time --->

Figure 3.10: Noise bits that change slowly relative tO estimated state values look relevant.

C.5 Discrete Reinforcemenl: The D Algorilhm

We found the standard Q technique insufficiently sensitive in the Amazon domain. The problem
is that Q simply sums all the reinforcement it gets, without distinguishing between different rein-

forcement values. For example, if the system is acting at random, as it does initially, it will
typically have to shoot off many shuriken before killing a ghost. As the value of killing a ghost
is only 10 and the cost of shooting is -.1, the 10 can get lost when sumnled with enough -.Is. To
solve this problem, we extended Q to make more distinctions. Specifically, we effectively added
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athird dimensionto Q(i,a), keeping track of D(i,a,r), the discounted future probability of recei-

ving reinforcement r after perfomaing action a given input i:

D(i(t),a(t),r) =

O0

Z 7'*_p(r(t + k) = r.

k=O

This extension separates out the various possible reinforcement values and so gives better
statistical information. The Q values can be recovered with the identity

Q(i,a) =Z r D(i,a,r)

rER

where R is the space of reinforcements. This extension to Q-learning is possible only when the
reinforcement given is discrete and takes on only a relatively small number of values (though it

might be possible to use buckets to apply it in cases of continuously varying reinforcement).

It's not surprising that D-learning works better than Q-learning; it is superior for the same reason
that Q-learning is better than the adaptive heuristic critic: it keeps track of more distinctions.
The logical next step in this progression would be to keep track of input-action-input triples, as
(for instance) Drescher [69] has done; we'll have more to say about this in section 3.2.E.

D Performance

It's hard to know how to evaluate the learning rate of G, lacking obvious alternatives to compare

it with. The system learns many times slov, er than Q on simple problems, because it has to
repeatedly split, throw away its old statistics, and start over again. However, we have
successfully run G on problems with thirty input bits, Ibr which Q could not allocate memory to
store its table, much less accumulate the billions of ticks of experience necessary to fill it out.

The only current alternative means of generalization for TD learning is backpropagation. A fair
comparison of the two would require a spectrum of domains, as the performance of TD plus

backpropagation is unpredictable.

The relevance-splitting component of G has performed very well in our problem domain. We
have run it for well over a million ticks with ten bits of noise given as inputs in addition to the

standard inputs specified earlier; it never split on any of these noise bits. On the other hand, on
several runs each of several variations of the problem and it has always split on all the bits that

are relevant.

The Amazon problem we tested G on had only six (relevant) bits of input, whereas the domain
used by Lin's tests of Q plus backpropagation has 145, most or all of which are probably relevant
to action in every situation. G would not work on such a problem; it would try to split on every
bit and soon generate too large a tree. However, Lin's encoding of the problem is essentially
retinotopic. As Chapman has argued [51], the inputs to mamnmlian learning systems are almost
certainly not retinotopic, and we should not try to optimize our learning systems for such inputs.
He hypothesizes that "intermediate" visual inputs will be much easier to learn from than

retinotopic ones.
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E Conclusions and Future Directions

Our first conclusion from this work is that temporal difference learning is not yet a mature
technology that can be readily applied to specific learning tasks (such as that of learning visual
routines). The bulk of experience with TD methods has been in simple domains that do not
stretch their capabilities. Further experimentation in complex domains will probably uncover
further difficulties and inspire further extensions to the basic algorithm.

This paper was concerned with the input generalization problem. A similar problem arises with
output generalization: if the number of actions is very large, the learner can not hope to try each
in every state. For example, our target visual system has several dozen control bits that the

action policy must set on every tick. Kaelbling has described an approach to this problem in
previous work [57]. We believe, however, that the G algorithm should be directly applicable to
the output generalization problem. That is, the system could keep track of the effect of
individual output bits on reinforcement received in particular input blocks, and construct a tree of
output bit relevance analogous to the input bit relevance tree. We have not implemented this,
however.

Finally, we conclude that temporal difference methods (however amended) will simply be
inadequate to learn effective action policies in some domains. TD methods are inherently single-
tick based: they consider only the value of actions taken in a state. Considering pairs of states
allows learning of state-transition models for actions. Such models enable planning methods for
getting to desirable states. Such methods have been advocated to improve the performance of an
agent once the models have been learned [58, 59, 70, 711. We observe, however, that they may
be even more important ira learning the models ira the first p]ace. The G algorithm, in learning
the Amazon problem, spends almost all of its time in uninteresting, already-overlearned portions
of the state space. It would learn immensely faster if it were able to deliberately enter parts of
the state space that it didn't know enough about] E_icient learning requires effective
experimentation, which requires (at least) action transition models. This will be increasingly
true in domains in which the most valuable states :ire ones that the learner is unlikely, to come
upon at random.

Such multiple-tick policy learning, however, poses severe combinatorial problems. The number
of possible state transitions is enormous: another dimension of generalization is required.
Furthermore, we are unsure how a system could effectively exploit the information if it were
learned; the usual combinatorial arguments against classical planning apply. Three previous

studies from the literature are relevant. Sutlon 1591 describes a system which successfully
combines transition learning and plunning witta Q-learning; however, he tested the combination
only in a tiny domain in which the combinatoric.,, could be expected to be tractable. Lin I581
made a similar combination ira a more complex domain, using a backpropagation network to
represent the state transition information. However, the connectivity of this network was chosen
to exploit the locality of the domain, and the resulting system is not general purpose. Finally,
Drescher's marginal attribution method 1691 learns action transition models by a method in some
respects similar to the G algorithm. (In fact G was partly inspired by the marginal attribution
method.) However, he reports only experiments in a small domain and does not analyze the
combinatorics, which look bad, in depth. Nonetheless, we are forced to conclude that some

method of this sort, with appropriate means of reducing the combinatorics, is required.

7. The IE algorithm doesn't hell) with this: IE chooses p_u>rly-undcrstood actions in whalever state it finds itself
in, but does not try to get itself into states in which there ,ire poorly-understood actions.
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3.3 Gaining Information Through Language

There has been much controversy recently as to whether the rules of interaction discovered by

conversation analysts are amenable to use by computers [72, 73, 74]. Button [75] has argued
that the rules of conversation are of a different ontological category than the rules used by
computers, and that this means computers cannot be programmed to engage in conversation.
Others [76, 77, 78] have argued to the contrary that the rules of conversation can be captured in a

program, and indeed that some have been. I will argue for a third position. Button is right in his
critique of existing attempts to import conversation analysis into computational linguistics and in
his argument that there is a rule type mismatch. His arguments do not, however, show that
computers cannot in principle be programmed to engage in conversation. I will argue by analogy
to computer network protocols that an interactionist computational interpretation of the
conversation analytical rules is possible, and that Button's critique can thereby be bypassed.

Button [79] has argued that computers cannot engage in conversation because the rules of

computation are of a different sort than the rules of conversation. The rules (or programs) that
govern computers

• are explicitly rep,esented,
• are causally efficacious, directly engendering the activities they describe, so that

• they cannot be violated, and thus
• have the force of mathematic,d laws.

The rules of conversation that h',t,,,c been discovered by conversation analysts [8()], on the other
hand,

• are typically, not represented by, their users, s
• are not causally efficacious, but nevertheless
• apply uniformly, even when they, are violated, and have the force of social norms.

If these properties seem odd, let us consider some examples. On the first point, most of us are
unaware of the role that gaze direction plays in the selection of next speaker in three-way
conversations [81]. A conversation analyst would argue that though it is logically possible that

we unconsciously represent ,ules about gaze direction, there is no evidence for that. The other
three points may be illustrated by the rule that you should shake the hand of a person you are
introduced to. This rule is not a physical law; you are able to violate it at will. Nevertheless, the
rule applies even when you have violated it: the person you have been introduced to is liable on
the basis of the rule to consider you rude. You are, then, liable to be held to account for the
violation; you may get an unfortunate reputation. Thus the normative character. These four
properties are summarized by conversation analysts in two terms: people are said to orient to

rules, rather than being {overned by them, and rules are viewed as a resource in conversation,
not a determining factor. 9

Button argues that the incompatibility between these sorts of rules implies (1) that recent
attempts to import rules from conversation analysis into computational linguistics are misguided,
and (2) that computers cannot, in principle, participate in conversation. I believe he is right on
the first count and wrong on the second.

The book Computers and Conversation 174] describes several systems [77, 78] that attempt to
incorporate rules taken from conversation analysis into natural language interface systems. In

8. Once discovered, the), may be represented by conversation analyses, who also of course use them.

9. For one attempt to explicate thesc ideas in an AI context, see 1821.
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thesesystems,conversationalrules, suchas thoseof turn taking,areexplicitly representedas
datastructuresin agrammaror fommlrule systemandareusedasthebasisof a naturallanguage
processingprogram. Since these rules are explicit, causallygovern action, and cannot be
violated, they are of a quite different characterthan the conversationanalytical rules which
inspiredthem.

Doesthismatter? It dependsonone'spurposes.For buildingbetterhuman/computerinterfaces,
this transformationin rule typewill beperfectlyjustified if indeedit resultsin interfacesthat are
easierto usethanonesnot inspiredby conversationanalysis. This is anengineeringquestion,
not a foundationalone,andit canonly beansweredempirically, not analytically. If, however,
one wishes to better understand human interaction by computational modeling, the
transformationis indeedtroubling. Thefour propertiesof conversationalrulesseemto becentral
characteristicsof humanactionmoregenerally[83]. We are,asButtonsays,"going upa blind
alley" if wecontinueto ignorethismismatchin rule type.

The easiestresponseto this difficult}, is to suggest,asHit'st [73] has,that"Button seemsto be
sayingnothingmore thanthat [conversationanalytical] rulesmust be representeddeclaratively,
not procedurally,so that they canbe deliberatelyand explicitly invoked with a view to their
effect. But far from precludingtheir useby acomputer,thisargumentsuggeststhattheyfit very
nicely into present-dayAI reasoningsystems!" This approachhasbeenpursuedby Fraserand
Wooffitt [76]. Theyproposetheirconversationalrulesareexplicitly representedandmanipulated
by metarules[84]. The metarulescan chooseto violate base-levelrules under appropriate
circumstances. Thus the base-levelrules are not causally efficacious and do not directly
determineaction. Theycan,however,beusedwhenviolatedto explainanotheragent'sactions.

However, this valiant attemptfails to capturetheconversationanalyticalnotion of rule. First,
FraserandWooffitt's rules arestill representations.The conversationanalyticalperspectiveis
not thatrulesshouldberepresenteddeclaratively,but thattheyshouldnotbe representedat all. m
Second, though individual rules in the implemented system are not causally efficacious, the set
of them is; the logic of the group of them cannot be violated. Third, there ix no account of the
sense in which the rules have the force of social norms.

We have thus far considered Button's first cl:_im, that the type mismatch betweer_ conversational

and computer rules means that direct translation of the former into the latter falsifies their nature.
Let us now consider his second claim, that this implies that computers cannot engage in
conversation.

Button hasn't shown that cornputers ca_z't orient to rules, just that in current AI practice they
don't. To see why Button's objections need not be fat,tl, we need to understand the interactionist

perspective of conversation analysis, and to see how this perspective might be interpreted
computationally.

Although the subject matter of conversation analysis is roughly the same as that of computational
linguistics, the goals of the two fields are fundamentally different. Conversation analysis does
not seek explanations of linguistic behavior. It is concerned rather with describing patterns of
interaction between people. Because it is not looking for causal explanations, and because it is
concerned with inter-individual phenomena, it is not concerned with things-in-the-head such as
representations. Conversation analysis does not deny that there are things-in-the-head; it is
simply uninterested because they are seen as irrelevant to its goals. It is, thus, not part of
cognitive science, and what counts as progress in each discipline does not look like progress to
the other.

10. Hirst's confusion on this point is undersumdablc: Button's cxposilion does not make the point explicit.
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These ideas may be easiestto understandby way of an analogy. Consider a computer
workstationrunning anetworkfile systemthat letsyou accessfiles ona remotefile server. The
client andservercommunicatevia a networkfile protocolsuchasFTPor NFS. This protocolis
a setof rulesthat specifyhow theclient andserverareto interact. However,the protocoldoes
not appearin thenetwork file systeminlplement:ltion:it isn't a datastructure,procedure,set of
procedures,or any other thing-in-the-computer. It is merely a specification. In fact, the
computerdoes not representthe protocol it uses. That's probably just as well, because
representingand manipulatingthe protocol- asa setof first-orderaxiomsin a theoremprover,
for instance- would bea difficult andcomputationallyinefficient way to build a network file
system.

Havingconcludedthattheprotocolis not in thecomputer,shouldwesupposeinsteadthat it is in
theenvironment? Or, by analogy,havingabandonedthementalistsuppositionthat patternsof
actionresult from representationsof thosepatte,'ns,must we acceptthe behavioristsupposition
thatactionis patternedby stimuli in theenvironment?

Theenvironmentof a computeron thenet is anothercomputeron the net. But if theprotocol is
not in theone,it is not in theothereither,sothatdoesn'thelpany. Theprotocolis written down
in a natural language document called an RFP; but that doesn't play an3,, role in the actual
operation of the file system. The protocol ma)' also be rep,esented in the head of the file

system's writer. These representations do play a causal (because historical) role in the operation
of the network code; but not in the usual sense in which representations play a role in action in
AI. The representations in the designer's head can change (he may forget the protocol) without
affecting the operation of the netw'ork code.

To return to the conversational rules case, the observz_tion that the network protocol is in the
head of the programmer is irrelevant, because there's no programmer in whose head the

conversation analytical rules would live. Similarly, although netv,,ork protocols are typically
written down on paper, the rules of convers',ttion mostly aren't because they mostly haven't been
discovered yet. " " "

Thus, the interactionist perspective of conversation analvsis sidesteps the mentalisn_-behaviorisna
debate. _1 For conversation analysis, the phenomena of ]'nterest can be located neither in the head
nor in the environment. Like network protocols, the), are interactional. To understand how

people do what they do, one has to know _bout things-in-the-head; but conversation analysis
refuses to speculate about these, because it is interested only in what people do. Thus, for con-

versation analysis, rules are not causal agents, but descriptions of regularities in interaction. By
analogy, one might obserx, e network traffic and induce the structure of a protocol without any,
access to the programs that use the protocol. Indeed, in some cases this access might not help
much; it is notorious that the uucp protocol is undocunlented and very hard to induce by reading
the convoluted code that uses it.

We can now diagnose the problems with existing computational interpretations of conversation

analysis as symptomatic of a deeper problem: the systems retain a mentalist orientation, with
their designers seeking to locate explanations of action in mental structures. This orientation is

endemic in AI generally; but nothing precludes interactionist AI in principle [82]. In fact, the
network protocol analog), suggests starting points for a different computational approach to
interpreting conversation analysis. We'll see now, in another example, how a rule governing
computer network communicatiorl has three of the four properties of conversation analytical
rules cited earlier: it is not represented, it is not causally efficacious, and it applies even when it
is violated.

11. For a clear exposition of how a third alternative to mcnkdism and bchavioris.n is possible, see [85 I.
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Thefundamentalrule of communicationon anEthernetlocalnetworkis thatonly one computer

may transmit at a time. If two computers try to talk at once, there is a "collision" and the
messages are scrambled. However, such collisions are unavoidable and occur regularly. When a
collision occurs, the transmitting compute,'s detect it and engage in a "remmsmit protocol" to

rectify the problem.

This rule has all the cited properties of conversation analytical rules except being a social norm.
First, as with the file protocol, the Ethernet controller does not anywhere represent or otherwise
include the rule. The rule is too pervasive and fundamental a feature of the situation to require

representation.

Second, representing the rule wouldn't be useful, in any case, because it is not causally effica-
cious; it cannot engender the constraint it imposes. The problem is that the rule is a constraint

on global interaction, not on individual action. A computer does not know when another
computer is about to transmit, so it can't avoid collisions. The rule "there shall be no collisions"
could be enforced by a complex protocol which gave machines information about when other

machines might start transmitting. But such protocols require significant design and don't just
fall out of the interactional rule. Thus we see that representing an interactional rule is not always

a help in conforming to it.

As for the third property,, the Ethernet collision rule applies even when it is violated. When two
computers do transmit simultaneously, the rule is used to interpret the resulting garble on the
network, and the retransmit protocol is used to repair the trouble.

Thus the protocol is an interactionist (rather than mentalist) form of rule use, but it is undeniably
computational. What, then, about conversation analysis and AI? Button is right that the
conversation analytical rules should not be represented as expert-system-like rules. But the fact

that computers are governed by' one sort of rules/programs) does not preclude their orienting to
another sort (such as those of conversation analysis). Does the fact that the rules of conversation
are not represented mean that we must eschew Lisp and use holistic neural networks? No.
There's nothing mystical about the guts of a network file system: procedures manipulate
datastructures " 'representing packets and connections and host addresses. Yet the program uses a

protocol it does not represent.

Of course network communication is in ahnost all other respects unlike human conversation; it

would be wrong to suggest that Ethernet controllers orient to the no-collisions rule. But this
example suggests that if the fourth issue - the normative character of rules - were addressed,
Button's argument may not hold water. I think this, and not the representational issue, is the
hard and interesting challenge of conversation analysis for computational linguistics.

What does it mean that the rules of conversation have the force of social norms? I doubt that

there can be a general answer to this question. Conversation analysts, following Garfinkel's
ethnomethodological critique of the appropriation of common-sense categories like "social
norm" as theoretical tenns [86, 80], would not even attempt to answer it. However, some

elementary observations may point in the right direction. First, social action is accountable in
the sense that one may be required to produce an account of the rationality of one's action. This

requirement is relatively unproblematic; it could be argued that some existing AI systems
produce such accounts. Second, when social interaction runs into trouble, as it regularly does,
the participants are required to make an effort to find the location of difficulty, to determine
which participant is responsible for the p,'oblem, and to take steps to repair it. Third, this process
of trouble location and repair is not a mechanical one; it requires interactive work and a

commitment to negotiating the specifics of concrete marginal cases.

I believe it is possible to build a natural language system whose rule use satisfies the first three

m
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criteria in the same way the Ethernet controller does; and whose action is arguably subject to
social norms in virtue of producing accounts, repairing misunderstandings, and negotiating

assignment of the location of difficuhies. This would not show that computers can engage in
conversation; there are many other obstacles. It would, however, demonstrate that the particular

problems Button raises are not the stumbling blocks.
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4 Conclusions

This report has described work done on the subject of acting to gain information. This work
included theoretical studies on the foundations of perception and action in intelligent, embedded
agents, as well as work on information-gathering in three qualitatively different modes: visual
perception, reinforcement learning, and conversational interaction.

In our theoretical investigations, we examined mathematically the ways in which information

and control interact, including the feasibility of different synthesis methodologies for handling
goals of information acquisition. Through these investigations, the interdependence of percep-
tion and action were elucidated in the situated-automata framework. It was shown how in certain

circumstances action strategies could, in principle, be synthesized automatically from descrip-
tions of the environment and task requirements. It was also shown under what circumstances

the perception and action components are, in fact, interdependent and must be co-specified.
Suggestions were offered on practical development methodologies.

Our work on visual perception was motivated to a large extent by the felt need in the intelligent-
agent community for high-level interptet,_tions of visual sensor data. Our approach has been to
bring the process of visual sensing and interpretation under the control of a reactive, goal-
directed control system. We defined primitive measurements that were anaenable to such con-

trol, along with an architecture that was capable of supporting constant-time updates of rich,
hierarchical object representations. Experiments were carried out to dernonstrate several advan-
ces in recognition and tracking.

In the area of learning, we carried out investigations aimed at improving the perfomlance of
reinforcement learning algorithms by maintaining statistics that identified relevant inputs so that
input generalization could be effectively performed. Experiments were carried out that demon-
strated promise. Finally, in the area of information gain through conversational interaction, we

explored the nature of computational rules and the role of convention in facilitating information
pickup in dialogue.

Our research has uncovered nun_erous opportunities for continued exploration. Theoretical

issues to be studied include advanced decomposition techniques for representations involving
statistical information, including extension of the formal analysis of Percm-like schemata for

perceptual updates based on statistical recognition. Our work on visual perception suggests a
long list of fruitful projects aimed at widening the set of measurement types employed by the
system, extending our techniques for finding homogeneous regions beyond the single-modality
(color) and connected-component approach used in this study, and extending our recognition
techniques and testing them against a larger set of models. Additional algorithmic ideas are also
required to recognize temporally extended visual events. In the area of learning, one useful
direction for further research would be the development of a principled approach to the
construction of hybrid systems, where directly programmed action rules would co-exist with

autonomously learned functionality in a single, unifying framework. Finally, in the area of
conversational interaction, simulations should be developed to illustrate and study coordination
phenomena enabled by linguistic exchange.

The development of a comprehensive body of theory and practice on acting to gain information
will have significant impact on a wide range of applications but will undoubtedly involve many
years of research and interactions across a variety of disciplines.

w
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